自动规划以查找替代错误跟踪

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Rajib Lochan Jana, Soumyajit Dey, Arijit Mondal, Pallab Dasgupta
{"title":"自动规划以查找替代错误跟踪","authors":"Rajib Lochan Jana,&nbsp;Soumyajit Dey,&nbsp;Arijit Mondal,&nbsp;Pallab Dasgupta","doi":"10.1049/iet-cdt.2019.0283","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Bug traces serve as references for patching a microprocessor design after a bug has been found. Unless the root cause of a bug has been detected and patched, variants of the bug may return through alternative bug traces, following a different sequence of micro-architectural events. To avoid such a situation, the verification engineer must think of every possible way in which the bug may return, which is a complex problem for a modern microprocessor. This study proposes a methodology which gleans high-level descriptions of the micro-architectural steps and uses them in an artificial Intelligence planning framework to find alternative pathways through which a bug may return. The plans are then translated to simulation test cases which explore these potential bug scenarios. The planning tool essentially automates the task of the verification engineer towards exploring possible alternative sequences of micro-architectural steps that may allow a bug to return. The proposed methodology is demonstrated in three case studies.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 6","pages":"322-335"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0283","citationCount":"1","resultStr":"{\"title\":\"Automated planning for finding alternative bug traces\",\"authors\":\"Rajib Lochan Jana,&nbsp;Soumyajit Dey,&nbsp;Arijit Mondal,&nbsp;Pallab Dasgupta\",\"doi\":\"10.1049/iet-cdt.2019.0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Bug traces serve as references for patching a microprocessor design after a bug has been found. Unless the root cause of a bug has been detected and patched, variants of the bug may return through alternative bug traces, following a different sequence of micro-architectural events. To avoid such a situation, the verification engineer must think of every possible way in which the bug may return, which is a complex problem for a modern microprocessor. This study proposes a methodology which gleans high-level descriptions of the micro-architectural steps and uses them in an artificial Intelligence planning framework to find alternative pathways through which a bug may return. The plans are then translated to simulation test cases which explore these potential bug scenarios. The planning tool essentially automates the task of the verification engineer towards exploring possible alternative sequences of micro-architectural steps that may allow a bug to return. The proposed methodology is demonstrated in three case studies.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 6\",\"pages\":\"322-335\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0283\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0283\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0283","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

在发现错误后,错误跟踪可作为修补微处理器设计的参考。除非已经检测到并修补了错误的根本原因,否则在不同的微体系结构事件序列之后,错误的变体可能会通过其他错误跟踪返回。为了避免这种情况,验证工程师必须考虑错误可能返回的各种可能方式,这对现代微处理器来说是一个复杂的问题。这项研究提出了一种方法,该方法收集了微观体系结构步骤的高级描述,并将其用于人工智能规划框架中,以找到漏洞可能返回的替代途径。然后将计划转换为模拟测试用例,以探索这些潜在的错误场景。该规划工具基本上自动化了验证工程师的任务,以探索可能允许错误返回的微体系结构步骤的可能替代序列。三个案例研究证明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated planning for finding alternative bug traces

Automated planning for finding alternative bug traces

Bug traces serve as references for patching a microprocessor design after a bug has been found. Unless the root cause of a bug has been detected and patched, variants of the bug may return through alternative bug traces, following a different sequence of micro-architectural events. To avoid such a situation, the verification engineer must think of every possible way in which the bug may return, which is a complex problem for a modern microprocessor. This study proposes a methodology which gleans high-level descriptions of the micro-architectural steps and uses them in an artificial Intelligence planning framework to find alternative pathways through which a bug may return. The plans are then translated to simulation test cases which explore these potential bug scenarios. The planning tool essentially automates the task of the verification engineer towards exploring possible alternative sequences of micro-architectural steps that may allow a bug to return. The proposed methodology is demonstrated in three case studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信