氧化物半导体导电机理的离子门控分析

Won Hyung Lee , YoungJun Yang , Junwoo Park , Sun Geun Yoon , Huding Jin , Donggun Lee , Junghyup Han , Yong Hyun Cho , Youn Sang Kim
{"title":"氧化物半导体导电机理的离子门控分析","authors":"Won Hyung Lee ,&nbsp;YoungJun Yang ,&nbsp;Junwoo Park ,&nbsp;Sun Geun Yoon ,&nbsp;Huding Jin ,&nbsp;Donggun Lee ,&nbsp;Junghyup Han ,&nbsp;Yong Hyun Cho ,&nbsp;Youn Sang Kim","doi":"10.1016/j.mtelec.2022.100010","DOIUrl":null,"url":null,"abstract":"<div><p>The electric field-effect is one of the common methods to tune the conductivity of materials in semiconductor devices because it can control the accumulation or depletion of charge carriers. However, to efficaciously dominate the electrical properties of the semiconductor in such a way, the application of an external voltage through the gate is an inevitable condition. Here, we propose an ion-dynamics-driven (ionovoltaic) transducer focusing on a self-gated field-effect by ion adsorption at the solid–liquid interface (an ion-gating effect without applied electric field). Considering an effective resistance derived from the generated signal, we establish an equivalent circuit of the ion-gating field-effect transducer to specifically analyze the conduction behavior of traveling electrons in an amorphous indium tin oxide film. As a result, using water droplet flow, we provide a convenient method to identify inherent conduction mechanisms of amorphous oxide semiconductors. This analysis has great potential as a tool to leap forward into a new interdisciplinary approach covering interface science and solid-state physics from a peculiar concept based on the ion-gating effect.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949422000109/pdfft?md5=cb1e3107ddf094c9a5c837417b932586&pid=1-s2.0-S2772949422000109-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Ion-gating analysis on conduction mechanisms in oxide semiconductors\",\"authors\":\"Won Hyung Lee ,&nbsp;YoungJun Yang ,&nbsp;Junwoo Park ,&nbsp;Sun Geun Yoon ,&nbsp;Huding Jin ,&nbsp;Donggun Lee ,&nbsp;Junghyup Han ,&nbsp;Yong Hyun Cho ,&nbsp;Youn Sang Kim\",\"doi\":\"10.1016/j.mtelec.2022.100010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electric field-effect is one of the common methods to tune the conductivity of materials in semiconductor devices because it can control the accumulation or depletion of charge carriers. However, to efficaciously dominate the electrical properties of the semiconductor in such a way, the application of an external voltage through the gate is an inevitable condition. Here, we propose an ion-dynamics-driven (ionovoltaic) transducer focusing on a self-gated field-effect by ion adsorption at the solid–liquid interface (an ion-gating effect without applied electric field). Considering an effective resistance derived from the generated signal, we establish an equivalent circuit of the ion-gating field-effect transducer to specifically analyze the conduction behavior of traveling electrons in an amorphous indium tin oxide film. As a result, using water droplet flow, we provide a convenient method to identify inherent conduction mechanisms of amorphous oxide semiconductors. This analysis has great potential as a tool to leap forward into a new interdisciplinary approach covering interface science and solid-state physics from a peculiar concept based on the ion-gating effect.</p></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772949422000109/pdfft?md5=cb1e3107ddf094c9a5c837417b932586&pid=1-s2.0-S2772949422000109-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772949422000109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949422000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电场效应是调节半导体器件中材料导电性的常用方法之一,因为它可以控制载流子的积累或耗尽。然而,为了以这种方式有效地控制半导体的电特性,通过栅极施加外部电压是不可避免的条件。在这里,我们提出了一种离子动力学驱动(离子伏打)换能器,专注于通过离子在固液界面吸附产生的自门控场效应(无外加电场的离子门控效应)。考虑到由产生的信号导出的有效电阻,我们建立了离子门控场效应转换器的等效电路,以专门分析行进电子在非晶铟锡氧化物膜中的传导行为。因此,利用水滴流动,我们提供了一种方便的方法来识别非晶氧化物半导体的固有导电机制。这一分析具有巨大的潜力,可以作为一种工具,从一个基于离子门控效应的特殊概念,跨越到一种涵盖界面科学和固态物理的新的跨学科方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ion-gating analysis on conduction mechanisms in oxide semiconductors

The electric field-effect is one of the common methods to tune the conductivity of materials in semiconductor devices because it can control the accumulation or depletion of charge carriers. However, to efficaciously dominate the electrical properties of the semiconductor in such a way, the application of an external voltage through the gate is an inevitable condition. Here, we propose an ion-dynamics-driven (ionovoltaic) transducer focusing on a self-gated field-effect by ion adsorption at the solid–liquid interface (an ion-gating effect without applied electric field). Considering an effective resistance derived from the generated signal, we establish an equivalent circuit of the ion-gating field-effect transducer to specifically analyze the conduction behavior of traveling electrons in an amorphous indium tin oxide film. As a result, using water droplet flow, we provide a convenient method to identify inherent conduction mechanisms of amorphous oxide semiconductors. This analysis has great potential as a tool to leap forward into a new interdisciplinary approach covering interface science and solid-state physics from a peculiar concept based on the ion-gating effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信