将时间序列和分类机器学习模型与操作数据相结合实现港口船舶燃油效率

IF 3.9 Q2 TRANSPORTATION
Januwar Hadi , Dimitrios Konovessis , Zhi Yung Tay
{"title":"将时间序列和分类机器学习模型与操作数据相结合实现港口船舶燃油效率","authors":"Januwar Hadi , Dimitrios Konovessis , Zhi Yung Tay","doi":"10.1016/j.martra.2022.100073","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":100885,"journal":{"name":"Maritime Transport Research","volume":"3 ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666822X22000235/pdfft?md5=d3e986ad20bb2603243b6a08345fe420&pid=1-s2.0-S2666822X22000235-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Achieving fuel efficiency of harbour craft vessel via combined time-series and classification machine learning model with operational data\",\"authors\":\"Januwar Hadi , Dimitrios Konovessis , Zhi Yung Tay\",\"doi\":\"10.1016/j.martra.2022.100073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":100885,\"journal\":{\"name\":\"Maritime Transport Research\",\"volume\":\"3 \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666822X22000235/pdfft?md5=d3e986ad20bb2603243b6a08345fe420&pid=1-s2.0-S2666822X22000235-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maritime Transport Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666822X22000235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maritime Transport Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666822X22000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了通过时间序列和分类预测模型相结合来预测港口船只燃料消耗率的工作。这项研究使用了机器学习工具,该工具使用5个月的原始操作数据进行训练,即燃油率、船只位置和风力数据。Haar小波变换对燃料流量数据中的噪声读数进行滤波。将风数据转换为风效应(阻力),并通过将船舶位置的GPS坐标转换为随时间行驶的船舶距离来获取船舶速度。随后,k-means聚类将来自相同操作(即巡航和拖曳)的拖船操作数据分组,用于分类模型的训练。并行执行时间序列(LSTM网络)和分类模型以产生预测结果。通过对经验结果的比较,讨论了不同结构和超参数对预测性能的影响。最后,作为本文方法的一个直接应用,提出了通过假设调整船舶速度来优化燃料使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving fuel efficiency of harbour craft vessel via combined time-series and classification machine learning model with operational data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信