限制在多孔SiO2基质中的超小型和小型CoxP纳米颗粒的耦合用于稳健的析氧反应

IF 9.9 2区 材料科学 Q1 Engineering
Xiaojun Zeng , Haiqi Zhang , Xiaofeng Zhang , Qingqing Zhang , Yunxia Chen , Ronghai Yu , Martin Moskovits
{"title":"限制在多孔SiO2基质中的超小型和小型CoxP纳米颗粒的耦合用于稳健的析氧反应","authors":"Xiaojun Zeng ,&nbsp;Haiqi Zhang ,&nbsp;Xiaofeng Zhang ,&nbsp;Qingqing Zhang ,&nbsp;Yunxia Chen ,&nbsp;Ronghai Yu ,&nbsp;Martin Moskovits","doi":"10.1016/j.nanoms.2022.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction (OER). It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously. Here, a series of Co<sub><em>x</em></sub>P nanoparticles (NPs) confined in an SiO<sub>2</sub> matrix (SiO<sub>2</sub>/Co<sub>x</sub>P) is designed and synthesized as OER electrocatalysts. The phosphorization of the hydrolyzed Co-phyllosilicate promotes the formation of ultrasmall and small Co<sub>2</sub>P and CoP. These are firmly confined in the SiO<sub>2</sub> matrix. The coupling of multi-size and multi-component Co<sub><em>x</em></sub>P catalysts can regulate reaction kinetics and electron transfer ability, enrich the active sites, and eventually promote the intrinsic OER activity. The SiO<sub>2</sub> matrix provides abundant porous structure and oxygen vacancies, and these facilitate the exposure of active sites and improve conductivity. Because of the synergy and interplay of multi-sized/component Co<sub>x</sub>P NPs and the porous SiO<sub>2</sub> matrix, the unique SiO<sub>2</sub>/Co<sub><em>x</em></sub>P heterostructure exhibits low overpotential (293 ​mV@10 ​mA ​cm<sup>-2</sup>), and robust stability (decay 12 ​mV after 5000 CV cycles, 97.4% of initial current after 100 ​h chronoamperometric) for the OER process, exceeding many advanced metal phosphide electrocatalysts. This work provides a novel tactic to design low-cost, simple, and highly efficient OER electrocatalysts.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"4 4","pages":"Pages 393-399"},"PeriodicalIF":9.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965122000174/pdfft?md5=74dfe2acab0cc1590b8a698f9cf2afe2&pid=1-s2.0-S2589965122000174-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Coupling of ultrasmall and small CoxP nanoparticles confined in porous SiO2 matrix for a robust oxygen evolution reaction\",\"authors\":\"Xiaojun Zeng ,&nbsp;Haiqi Zhang ,&nbsp;Xiaofeng Zhang ,&nbsp;Qingqing Zhang ,&nbsp;Yunxia Chen ,&nbsp;Ronghai Yu ,&nbsp;Martin Moskovits\",\"doi\":\"10.1016/j.nanoms.2022.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction (OER). It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously. Here, a series of Co<sub><em>x</em></sub>P nanoparticles (NPs) confined in an SiO<sub>2</sub> matrix (SiO<sub>2</sub>/Co<sub>x</sub>P) is designed and synthesized as OER electrocatalysts. The phosphorization of the hydrolyzed Co-phyllosilicate promotes the formation of ultrasmall and small Co<sub>2</sub>P and CoP. These are firmly confined in the SiO<sub>2</sub> matrix. The coupling of multi-size and multi-component Co<sub><em>x</em></sub>P catalysts can regulate reaction kinetics and electron transfer ability, enrich the active sites, and eventually promote the intrinsic OER activity. The SiO<sub>2</sub> matrix provides abundant porous structure and oxygen vacancies, and these facilitate the exposure of active sites and improve conductivity. Because of the synergy and interplay of multi-sized/component Co<sub>x</sub>P NPs and the porous SiO<sub>2</sub> matrix, the unique SiO<sub>2</sub>/Co<sub><em>x</em></sub>P heterostructure exhibits low overpotential (293 ​mV@10 ​mA ​cm<sup>-2</sup>), and robust stability (decay 12 ​mV after 5000 CV cycles, 97.4% of initial current after 100 ​h chronoamperometric) for the OER process, exceeding many advanced metal phosphide electrocatalysts. This work provides a novel tactic to design low-cost, simple, and highly efficient OER electrocatalysts.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"4 4\",\"pages\":\"Pages 393-399\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000174/pdfft?md5=74dfe2acab0cc1590b8a698f9cf2afe2&pid=1-s2.0-S2589965122000174-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000174\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000174","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

摘要

电催化剂的合理设计对于可持续的析氧反应(OER)是重要的。同时设计多尺寸和多组件的活动站点仍然是一个巨大的挑战。在此,设计并合成了一系列限制在SiO2基质(SiO2/CoxP)中的CoxP纳米颗粒(NP)作为OER电催化剂。水解的钴层状硅酸盐的磷酸化促进了超小和超小Co2P和CoP的形成。这些被牢固地限制在SiO2基质中。多尺寸和多组分CoxP催化剂的偶联可以调节反应动力学和电子转移能力,富集活性位点,并最终促进本征OER活性。SiO2基体提供了丰富的多孔结构和氧空位,这些有助于活性位点的暴露并提高导电性。由于多尺寸/组分CoxP NP和多孔SiO2基体的协同作用和相互作用,独特的SiO2/CoxP异质结构表现出低过电位(293​mV@10​毫安​cm-2)和鲁棒稳定性(衰减12​5000次CV循环后mV,100次循环后初始电流的97.4%​h计时电流法),超过了许多先进的金属磷化物电催化剂。这项工作为设计低成本、简单高效的OER电催化剂提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling of ultrasmall and small CoxP nanoparticles confined in porous SiO2 matrix for a robust oxygen evolution reaction

Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction (OER). It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously. Here, a series of CoxP nanoparticles (NPs) confined in an SiO2 matrix (SiO2/CoxP) is designed and synthesized as OER electrocatalysts. The phosphorization of the hydrolyzed Co-phyllosilicate promotes the formation of ultrasmall and small Co2P and CoP. These are firmly confined in the SiO2 matrix. The coupling of multi-size and multi-component CoxP catalysts can regulate reaction kinetics and electron transfer ability, enrich the active sites, and eventually promote the intrinsic OER activity. The SiO2 matrix provides abundant porous structure and oxygen vacancies, and these facilitate the exposure of active sites and improve conductivity. Because of the synergy and interplay of multi-sized/component CoxP NPs and the porous SiO2 matrix, the unique SiO2/CoxP heterostructure exhibits low overpotential (293 ​mV@10 ​mA ​cm-2), and robust stability (decay 12 ​mV after 5000 CV cycles, 97.4% of initial current after 100 ​h chronoamperometric) for the OER process, exceeding many advanced metal phosphide electrocatalysts. This work provides a novel tactic to design low-cost, simple, and highly efficient OER electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信