{"title":"弦图的约化团图","authors":"Michel Habib , Juraj Stacho","doi":"10.1016/j.ejc.2011.09.031","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the properties of chordal graphs that follow from the well-known fact that chordal graphs admit tree representations. In particular, we study the structure of reduced clique graphs which are graphs that canonically capture all tree representations of chordal graphs. We propose a novel decomposition of reduced clique graphs based on two operations: edge contraction and removal of the edges of a split. Based on this decomposition, we characterize asteroidal sets in chordal graphs, and discuss chordal graphs that admit a tree representation with a small number of leaves.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"33 5","pages":"Pages 712-735"},"PeriodicalIF":1.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejc.2011.09.031","citationCount":"26","resultStr":"{\"title\":\"Reduced clique graphs of chordal graphs\",\"authors\":\"Michel Habib , Juraj Stacho\",\"doi\":\"10.1016/j.ejc.2011.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the properties of chordal graphs that follow from the well-known fact that chordal graphs admit tree representations. In particular, we study the structure of reduced clique graphs which are graphs that canonically capture all tree representations of chordal graphs. We propose a novel decomposition of reduced clique graphs based on two operations: edge contraction and removal of the edges of a split. Based on this decomposition, we characterize asteroidal sets in chordal graphs, and discuss chordal graphs that admit a tree representation with a small number of leaves.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"33 5\",\"pages\":\"Pages 712-735\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ejc.2011.09.031\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566981100179X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566981100179X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We investigate the properties of chordal graphs that follow from the well-known fact that chordal graphs admit tree representations. In particular, we study the structure of reduced clique graphs which are graphs that canonically capture all tree representations of chordal graphs. We propose a novel decomposition of reduced clique graphs based on two operations: edge contraction and removal of the edges of a split. Based on this decomposition, we characterize asteroidal sets in chordal graphs, and discuss chordal graphs that admit a tree representation with a small number of leaves.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.