Ahmed M. El-Saghier, Souhaila S. Enaili, Aly Abdou, Asmaa M. Kadry
{"title":"高效、环保、简单、绿色地合成了一些新的螺-N-(4-氨磺酰基-苯基)-1,3,4-噻二唑-2-甲酰胺衍生物,这些衍生物是严重急性呼吸系统综合征冠状病毒2型蛋白酶的潜在抑制剂:药物相似性、药效团、分子对接和DFT探索。","authors":"Ahmed M. El-Saghier, Souhaila S. Enaili, Aly Abdou, Asmaa M. Kadry","doi":"10.1007/s11030-023-10761-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>The coronavirus disease 2019 (COVID-19) pandemic has caused a global health crisis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus that can cause severe respiratory illness. There is no specific treatment for COVID-19, and the development of new drugs is urgently needed.</p><h3>Problem statement</h3><p>The SARS-CoV-2 main protease (M<sup>pro</sup>) enzyme is a critical viral enzyme that plays a vital role in viral replication. The inhibition of M<sup>pro</sup> enzyme can be an effective strategy for developing new COVID-19 drugs.</p><h3>Methodology</h3><p>An efficient operationally simple and convenient green synthesis method had been done towards a series of novel spiro-<i>N</i>-(4-sulfamoylphenyl)-2-carboxamide derivatives, in ethanol at room temperature in green conditions, up to 90% yield. The molecular structures of the synthesized compounds were verified using spectroscopic methods.The title compounds were subjected to in silico analysis, including Lipinski’s rule and ADMET prediction, in addition to pharmacophore modeling and molecular docking against the active site of SARS-CoV-2 target main protease (M<sup>pro</sup>) enzyme (6LU7). Furthermore, both of the top-ranked compounds (5 and 6) and the standard Nirmatrelvir were subjected to DFT analysis.</p><h3>Findings</h3><p>The synthesized compounds exhibited good binding affinity to SARS-CoV-2 Mpro enzyme, with binding energy scores ranging from − 7.33 kcal/mol (compound <b>6</b>) and − 7.22kcal/mol (compound <b>5</b>) to − 6.54 kcal/mol (compounds <b>8</b> and <b>9</b>). The top-ranked compounds (<b>5</b> and <b>6</b>) had lower HOMO–LUMO energy difference (ΔE) than the standard drug Nirmatrelvir. This highlights the potential and relevance of charge transfer at the molecular level.</p><h3>Recommendation</h3><p>These findings suggest that the synthesized spiro-N-(4-sulfamoylphenyl)-2-carboxamide derivatives could be potential candidates for COVID-19 drug development. To confirm these drugs' antiviral efficacy in vivo, more research is required. With very little possibility of failure, this proven method could aid in the search for the SARS-CoV-2 pandemic's desperately needed medications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":"28 1","pages":"249 - 270"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876818/pdf/","citationCount":"0","resultStr":"{\"title\":\"An efficient eco-friendly, simple, and green synthesis of some new spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives as potential inhibitors of SARS-CoV-2 proteases: drug-likeness, pharmacophore, molecular docking, and DFT exploration\",\"authors\":\"Ahmed M. El-Saghier, Souhaila S. Enaili, Aly Abdou, Asmaa M. Kadry\",\"doi\":\"10.1007/s11030-023-10761-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>The coronavirus disease 2019 (COVID-19) pandemic has caused a global health crisis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus that can cause severe respiratory illness. There is no specific treatment for COVID-19, and the development of new drugs is urgently needed.</p><h3>Problem statement</h3><p>The SARS-CoV-2 main protease (M<sup>pro</sup>) enzyme is a critical viral enzyme that plays a vital role in viral replication. The inhibition of M<sup>pro</sup> enzyme can be an effective strategy for developing new COVID-19 drugs.</p><h3>Methodology</h3><p>An efficient operationally simple and convenient green synthesis method had been done towards a series of novel spiro-<i>N</i>-(4-sulfamoylphenyl)-2-carboxamide derivatives, in ethanol at room temperature in green conditions, up to 90% yield. The molecular structures of the synthesized compounds were verified using spectroscopic methods.The title compounds were subjected to in silico analysis, including Lipinski’s rule and ADMET prediction, in addition to pharmacophore modeling and molecular docking against the active site of SARS-CoV-2 target main protease (M<sup>pro</sup>) enzyme (6LU7). Furthermore, both of the top-ranked compounds (5 and 6) and the standard Nirmatrelvir were subjected to DFT analysis.</p><h3>Findings</h3><p>The synthesized compounds exhibited good binding affinity to SARS-CoV-2 Mpro enzyme, with binding energy scores ranging from − 7.33 kcal/mol (compound <b>6</b>) and − 7.22kcal/mol (compound <b>5</b>) to − 6.54 kcal/mol (compounds <b>8</b> and <b>9</b>). The top-ranked compounds (<b>5</b> and <b>6</b>) had lower HOMO–LUMO energy difference (ΔE) than the standard drug Nirmatrelvir. This highlights the potential and relevance of charge transfer at the molecular level.</p><h3>Recommendation</h3><p>These findings suggest that the synthesized spiro-N-(4-sulfamoylphenyl)-2-carboxamide derivatives could be potential candidates for COVID-19 drug development. To confirm these drugs' antiviral efficacy in vivo, more research is required. With very little possibility of failure, this proven method could aid in the search for the SARS-CoV-2 pandemic's desperately needed medications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\"28 1\",\"pages\":\"249 - 270\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876818/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11030-023-10761-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11030-023-10761-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
An efficient eco-friendly, simple, and green synthesis of some new spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives as potential inhibitors of SARS-CoV-2 proteases: drug-likeness, pharmacophore, molecular docking, and DFT exploration
Introduction
The coronavirus disease 2019 (COVID-19) pandemic has caused a global health crisis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus that can cause severe respiratory illness. There is no specific treatment for COVID-19, and the development of new drugs is urgently needed.
Problem statement
The SARS-CoV-2 main protease (Mpro) enzyme is a critical viral enzyme that plays a vital role in viral replication. The inhibition of Mpro enzyme can be an effective strategy for developing new COVID-19 drugs.
Methodology
An efficient operationally simple and convenient green synthesis method had been done towards a series of novel spiro-N-(4-sulfamoylphenyl)-2-carboxamide derivatives, in ethanol at room temperature in green conditions, up to 90% yield. The molecular structures of the synthesized compounds were verified using spectroscopic methods.The title compounds were subjected to in silico analysis, including Lipinski’s rule and ADMET prediction, in addition to pharmacophore modeling and molecular docking against the active site of SARS-CoV-2 target main protease (Mpro) enzyme (6LU7). Furthermore, both of the top-ranked compounds (5 and 6) and the standard Nirmatrelvir were subjected to DFT analysis.
Findings
The synthesized compounds exhibited good binding affinity to SARS-CoV-2 Mpro enzyme, with binding energy scores ranging from − 7.33 kcal/mol (compound 6) and − 7.22kcal/mol (compound 5) to − 6.54 kcal/mol (compounds 8 and 9). The top-ranked compounds (5 and 6) had lower HOMO–LUMO energy difference (ΔE) than the standard drug Nirmatrelvir. This highlights the potential and relevance of charge transfer at the molecular level.
Recommendation
These findings suggest that the synthesized spiro-N-(4-sulfamoylphenyl)-2-carboxamide derivatives could be potential candidates for COVID-19 drug development. To confirm these drugs' antiviral efficacy in vivo, more research is required. With very little possibility of failure, this proven method could aid in the search for the SARS-CoV-2 pandemic's desperately needed medications.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;