Tiantian Wu, Hong Wang, Run Tian, Shuang Guo, Yuhui Liao, Prof. Jianbing Liu, Prof. Baoquan Ding
{"title":"一种用于感染伤口有效愈合的DNA折纸杀菌剂","authors":"Tiantian Wu, Hong Wang, Run Tian, Shuang Guo, Yuhui Liao, Prof. Jianbing Liu, Prof. Baoquan Ding","doi":"10.1002/ange.202311698","DOIUrl":null,"url":null,"abstract":"<p>Bacteria infection is a significant obstacle in the clinical treatment of exposed wounds facing widespread pathogens. Herein, we report a DNA origami-based bactericide for efficient anti-infection therapy of infected wounds in vivo. In our design, abundant DNAzymes (G4/hemin) can be precisely organized on the DNA origami for controllable generation of reactive oxygen species (ROS) to break bacterial membranes. After the destruction of the membrane, broad-spectrum antibiotic levofloxacin (LEV, loaded in the DNA origami through interaction with DNA duplex) can be easily delivered into the bacteria for successful sterilization. With the incorporation of DNA aptamer targeting bacterial peptidoglycan, the DNA origami-based bactericide can achieve targeted and combined antibacterial therapy for efficiently promoting the healing of infected wounds. This tailored DNA origami-based nanoplatform provides a new strategy for the treatment of infectious diseases in vivo.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DNA Origami-based Bactericide for Efficient Healing of Infected Wounds\",\"authors\":\"Tiantian Wu, Hong Wang, Run Tian, Shuang Guo, Yuhui Liao, Prof. Jianbing Liu, Prof. Baoquan Ding\",\"doi\":\"10.1002/ange.202311698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bacteria infection is a significant obstacle in the clinical treatment of exposed wounds facing widespread pathogens. Herein, we report a DNA origami-based bactericide for efficient anti-infection therapy of infected wounds in vivo. In our design, abundant DNAzymes (G4/hemin) can be precisely organized on the DNA origami for controllable generation of reactive oxygen species (ROS) to break bacterial membranes. After the destruction of the membrane, broad-spectrum antibiotic levofloxacin (LEV, loaded in the DNA origami through interaction with DNA duplex) can be easily delivered into the bacteria for successful sterilization. With the incorporation of DNA aptamer targeting bacterial peptidoglycan, the DNA origami-based bactericide can achieve targeted and combined antibacterial therapy for efficiently promoting the healing of infected wounds. This tailored DNA origami-based nanoplatform provides a new strategy for the treatment of infectious diseases in vivo.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202311698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202311698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A DNA Origami-based Bactericide for Efficient Healing of Infected Wounds
Bacteria infection is a significant obstacle in the clinical treatment of exposed wounds facing widespread pathogens. Herein, we report a DNA origami-based bactericide for efficient anti-infection therapy of infected wounds in vivo. In our design, abundant DNAzymes (G4/hemin) can be precisely organized on the DNA origami for controllable generation of reactive oxygen species (ROS) to break bacterial membranes. After the destruction of the membrane, broad-spectrum antibiotic levofloxacin (LEV, loaded in the DNA origami through interaction with DNA duplex) can be easily delivered into the bacteria for successful sterilization. With the incorporation of DNA aptamer targeting bacterial peptidoglycan, the DNA origami-based bactericide can achieve targeted and combined antibacterial therapy for efficiently promoting the healing of infected wounds. This tailored DNA origami-based nanoplatform provides a new strategy for the treatment of infectious diseases in vivo.