优化的HEVC编码器仅内部配置

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Nejmeddine Bahri, Randa Khemiri
{"title":"优化的HEVC编码器仅内部配置","authors":"Nejmeddine Bahri,&nbsp;Randa Khemiri","doi":"10.1049/iet-cdt.2019.0197","DOIUrl":null,"url":null,"abstract":"<div>\n <p>High-efficiency video coding (HEVC) is the latest video coding standard aimed to reduce the bitrate by half for the same video quality compared to H.264/AVC. This encoding performance makes HEVC more suitable for high-definition video applications. However, this performance is coupled with a high-computational complexity, which makes it hard to achieve real-time video encoding with a classic embedded processor. Multicore technology of programmable processors could be a very promising solution to overcome this computational complexity. Moreover, software optimisations by proposing fast algorithms for the most complex functions could also be an efficient solution to speed up the encoding process. In this context, this study presents a fast mode decision algorithm for the intra prediction module. This algorithm aims to reduce the number of intra prediction modes to be tested instead of performing a full intra mode search. Experimental results for all-Intra configuration show that the proposed fast intra mode decision allows saving up to 46.79% of the intra prediction time in average. Encoding performance in terms of video quality and bitrate is not significantly affected.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 6","pages":"256-262"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0197","citationCount":"4","resultStr":"{\"title\":\"Optimised HEVC encoder intra-only configuration\",\"authors\":\"Nejmeddine Bahri,&nbsp;Randa Khemiri\",\"doi\":\"10.1049/iet-cdt.2019.0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>High-efficiency video coding (HEVC) is the latest video coding standard aimed to reduce the bitrate by half for the same video quality compared to H.264/AVC. This encoding performance makes HEVC more suitable for high-definition video applications. However, this performance is coupled with a high-computational complexity, which makes it hard to achieve real-time video encoding with a classic embedded processor. Multicore technology of programmable processors could be a very promising solution to overcome this computational complexity. Moreover, software optimisations by proposing fast algorithms for the most complex functions could also be an efficient solution to speed up the encoding process. In this context, this study presents a fast mode decision algorithm for the intra prediction module. This algorithm aims to reduce the number of intra prediction modes to be tested instead of performing a full intra mode search. Experimental results for all-Intra configuration show that the proposed fast intra mode decision allows saving up to 46.79% of the intra prediction time in average. Encoding performance in terms of video quality and bitrate is not significantly affected.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 6\",\"pages\":\"256-262\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-cdt.2019.0197\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0197\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0197","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4

摘要

高效视频编码(HEVC)是最新的视频编码标准,旨在与H.264/AVC相比,在相同视频质量的情况下将比特率降低一半。这种编码性能使HEVC更适合高清视频应用。然而,这种性能与高计算复杂度相结合,这使得很难用经典的嵌入式处理器实现实时视频编码。可编程处理器的多核技术可能是克服这种计算复杂性的一个非常有前途的解决方案。此外,通过为最复杂的函数提出快速算法进行软件优化也可能是加快编码过程的有效解决方案。在此背景下,本研究提出了一种用于帧内预测模块的快速模式决策算法。该算法旨在减少要测试的帧内预测模式的数量,而不是执行完整的帧内模式搜索。所有帧内配置的实验结果表明,所提出的快速帧内模式决策允许平均节省高达46.79%的帧内预测时间。视频质量和比特率方面的编码性能不会受到显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimised HEVC encoder intra-only configuration

Optimised HEVC encoder intra-only configuration

High-efficiency video coding (HEVC) is the latest video coding standard aimed to reduce the bitrate by half for the same video quality compared to H.264/AVC. This encoding performance makes HEVC more suitable for high-definition video applications. However, this performance is coupled with a high-computational complexity, which makes it hard to achieve real-time video encoding with a classic embedded processor. Multicore technology of programmable processors could be a very promising solution to overcome this computational complexity. Moreover, software optimisations by proposing fast algorithms for the most complex functions could also be an efficient solution to speed up the encoding process. In this context, this study presents a fast mode decision algorithm for the intra prediction module. This algorithm aims to reduce the number of intra prediction modes to be tested instead of performing a full intra mode search. Experimental results for all-Intra configuration show that the proposed fast intra mode decision allows saving up to 46.79% of the intra prediction time in average. Encoding performance in terms of video quality and bitrate is not significantly affected.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信