用于最小化2D和3D IC串扰的直线布线算法

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Khokan Mondal, Subhajit Das, Tuhina Samanta
{"title":"用于最小化2D和3D IC串扰的直线布线算法","authors":"Khokan Mondal,&nbsp;Subhajit Das,&nbsp;Tuhina Samanta","doi":"10.1049/iet-cdt.2020.0010","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The coupling capacitance and inductance of 2D and 3D integrated circuit (IC) interconnects in deep sub-micron technology has been increased due to reduced coupling distance in such a way that their magnitudes become comparable to the area and fringing capacitance of an interconnect. This leads to an increasing risk of failure due to unintentional noise and a need for accurate noise assessment. Incorrect noise estimation could either result in defects in circuit design if the design resources are understated or it will end up with a waste of overestimation resources. In this study, a crosstalk noise model for coupled RLC on-chip interconnects has been demonstrated. Subsequently, a novel time-efficient method is proposed to estimate and optimise the crosstalk noise precisely. The proposed method calculates coupling noise as well as optimises crosstalk noise, which has been validated using SPICE. Besides the estimation of crosstalk noise for 2D interconnect, this study also estimates the crosstalk noise for through-silicon-via (TSV), which is used to connect different dies vertically in a 3D IC. Under high-frequency operation, effects of signal rise time, TSV structure (height of the TSV), substrate resistivity and the guarding TSV termination on crosstalk noise have also been studied in this work.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-cdt.2020.0010","citationCount":"0","resultStr":"{\"title\":\"Rectilinear routing algorithm for crosstalk minimisation in 2D and 3D IC\",\"authors\":\"Khokan Mondal,&nbsp;Subhajit Das,&nbsp;Tuhina Samanta\",\"doi\":\"10.1049/iet-cdt.2020.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The coupling capacitance and inductance of 2D and 3D integrated circuit (IC) interconnects in deep sub-micron technology has been increased due to reduced coupling distance in such a way that their magnitudes become comparable to the area and fringing capacitance of an interconnect. This leads to an increasing risk of failure due to unintentional noise and a need for accurate noise assessment. Incorrect noise estimation could either result in defects in circuit design if the design resources are understated or it will end up with a waste of overestimation resources. In this study, a crosstalk noise model for coupled RLC on-chip interconnects has been demonstrated. Subsequently, a novel time-efficient method is proposed to estimate and optimise the crosstalk noise precisely. The proposed method calculates coupling noise as well as optimises crosstalk noise, which has been validated using SPICE. Besides the estimation of crosstalk noise for 2D interconnect, this study also estimates the crosstalk noise for through-silicon-via (TSV), which is used to connect different dies vertically in a 3D IC. Under high-frequency operation, effects of signal rise time, TSV structure (height of the TSV), substrate resistivity and the guarding TSV termination on crosstalk noise have also been studied in this work.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/iet-cdt.2020.0010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2020.0010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2020.0010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

深亚微米技术中的2D和3D集成电路(IC)互连的耦合电容和电感由于耦合距离的减小而增加,使得它们的大小变得与互连的面积和边缘电容相当。这导致由于无意噪声而导致的故障风险增加,并且需要准确的噪声评估。如果设计资源被低估,不正确的噪声估计可能会导致电路设计中的缺陷,或者最终会浪费过高的估计资源。在本研究中,已经证明了耦合RLC片上互连的串扰噪声模型。随后,提出了一种新的时间有效方法来精确估计和优化串扰噪声。所提出的方法计算耦合噪声并优化串扰噪声,这已经使用SPICE进行了验证。除了估计2D互连的串扰噪声外,本研究还估计了用于在3D IC中垂直连接不同管芯的硅通孔(TSV)的串扰噪声。在高频工作条件下,还研究了信号上升时间、TSV结构(TSV高度)、衬底电阻率和保护TSV终端对串扰噪声的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rectilinear routing algorithm for crosstalk minimisation in 2D and 3D IC

Rectilinear routing algorithm for crosstalk minimisation in 2D and 3D IC

The coupling capacitance and inductance of 2D and 3D integrated circuit (IC) interconnects in deep sub-micron technology has been increased due to reduced coupling distance in such a way that their magnitudes become comparable to the area and fringing capacitance of an interconnect. This leads to an increasing risk of failure due to unintentional noise and a need for accurate noise assessment. Incorrect noise estimation could either result in defects in circuit design if the design resources are understated or it will end up with a waste of overestimation resources. In this study, a crosstalk noise model for coupled RLC on-chip interconnects has been demonstrated. Subsequently, a novel time-efficient method is proposed to estimate and optimise the crosstalk noise precisely. The proposed method calculates coupling noise as well as optimises crosstalk noise, which has been validated using SPICE. Besides the estimation of crosstalk noise for 2D interconnect, this study also estimates the crosstalk noise for through-silicon-via (TSV), which is used to connect different dies vertically in a 3D IC. Under high-frequency operation, effects of signal rise time, TSV structure (height of the TSV), substrate resistivity and the guarding TSV termination on crosstalk noise have also been studied in this work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信