Jie Li, Shanshan Liu, Pedro Reviriego, Liyi Xiao, Fabrizio Lombardi
{"title":"并行CRC电路中的周期性并发故障检测方案","authors":"Jie Li, Shanshan Liu, Pedro Reviriego, Liyi Xiao, Fabrizio Lombardi","doi":"10.1049/iet-cdt.2018.5183","DOIUrl":null,"url":null,"abstract":"<div>\n <p>As technology scales down, circuits are more prone to incur in faults and fault detection is necessary to ensure the system reliability. However, fault-detection circuits are also vulnerable to stuck-at faults due to, for example, manufacturing defects or ageing; a fault can cause an incorrect output in the fault-detection scheme; so concurrent fault detection is, therefore, needed. Cyclic redundancy checks (CRCs) are widely used to detect errors in many applications, for example, they are used in communication to detect errors on transmitted frames. In this study, an efficient method to implement concurrent fault detection for parallel CRC computation is proposed. The scheme relies on using a serial CRC computation circuit that is used to periodically check the results obtained from the main module to detect the faults. This introduces a lower circuit overhead than existing schemes. All CRC encoders and decoders that implement the CRC computation in parallel can employ the proposed scheme to detect faults.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 2","pages":"80-85"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-cdt.2018.5183","citationCount":"1","resultStr":"{\"title\":\"Scheme for periodical concurrent fault detection in parallel CRC circuits\",\"authors\":\"Jie Li, Shanshan Liu, Pedro Reviriego, Liyi Xiao, Fabrizio Lombardi\",\"doi\":\"10.1049/iet-cdt.2018.5183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>As technology scales down, circuits are more prone to incur in faults and fault detection is necessary to ensure the system reliability. However, fault-detection circuits are also vulnerable to stuck-at faults due to, for example, manufacturing defects or ageing; a fault can cause an incorrect output in the fault-detection scheme; so concurrent fault detection is, therefore, needed. Cyclic redundancy checks (CRCs) are widely used to detect errors in many applications, for example, they are used in communication to detect errors on transmitted frames. In this study, an efficient method to implement concurrent fault detection for parallel CRC computation is proposed. The scheme relies on using a serial CRC computation circuit that is used to periodically check the results obtained from the main module to detect the faults. This introduces a lower circuit overhead than existing schemes. All CRC encoders and decoders that implement the CRC computation in parallel can employ the proposed scheme to detect faults.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 2\",\"pages\":\"80-85\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/iet-cdt.2018.5183\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5183\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2018.5183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Scheme for periodical concurrent fault detection in parallel CRC circuits
As technology scales down, circuits are more prone to incur in faults and fault detection is necessary to ensure the system reliability. However, fault-detection circuits are also vulnerable to stuck-at faults due to, for example, manufacturing defects or ageing; a fault can cause an incorrect output in the fault-detection scheme; so concurrent fault detection is, therefore, needed. Cyclic redundancy checks (CRCs) are widely used to detect errors in many applications, for example, they are used in communication to detect errors on transmitted frames. In this study, an efficient method to implement concurrent fault detection for parallel CRC computation is proposed. The scheme relies on using a serial CRC computation circuit that is used to periodically check the results obtained from the main module to detect the faults. This introduces a lower circuit overhead than existing schemes. All CRC encoders and decoders that implement the CRC computation in parallel can employ the proposed scheme to detect faults.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.