安全集成电路设计中可测试性参数的灵敏度分析

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Sreeja Rajendran, Mary Lourde Regeena
{"title":"安全集成电路设计中可测试性参数的灵敏度分析","authors":"Sreeja Rajendran,&nbsp;Mary Lourde Regeena","doi":"10.1049/iet-cdt.2019.0217","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Insertion of malicious circuits commonly known as Hardware Trojans into an original integrated circuit (IC) design to alter the functionality has been a major concern in recent years. As a result, over the years multiple techniques have been suggested by researchers to combat these malicious threats. Hard to test nets in any logic circuit are the most vulnerable to insertion of Hardware Trojans. Testability analysis is the process of identification of these hard to test nets in a logic circuit. Testability analysis is achieved through the testability metrics namely controllability and observability. Testability metrics can be used as a yardstick in devising efficient Hardware Trojan detection methods. The crux of this study is a novel method for identification of susceptible nets that are prone to Hardware Trojan insertions in a logic circuit. The study also presents a comprehensive analysis of the impact on testability parameters as a result of Hardware Trojans in the identified susceptible nets. The method utilises the testability parameters of nets to define threshold values for isolating susceptible nets in a design. The study details out the impact of the number of trigger inputs as well as the distribution of trigger nets on the testability metrics of digital circuits.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"14 4","pages":"158-165"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-cdt.2019.0217","citationCount":"1","resultStr":"{\"title\":\"Sensitivity analysis of testability parameters for secure IC design\",\"authors\":\"Sreeja Rajendran,&nbsp;Mary Lourde Regeena\",\"doi\":\"10.1049/iet-cdt.2019.0217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Insertion of malicious circuits commonly known as Hardware Trojans into an original integrated circuit (IC) design to alter the functionality has been a major concern in recent years. As a result, over the years multiple techniques have been suggested by researchers to combat these malicious threats. Hard to test nets in any logic circuit are the most vulnerable to insertion of Hardware Trojans. Testability analysis is the process of identification of these hard to test nets in a logic circuit. Testability analysis is achieved through the testability metrics namely controllability and observability. Testability metrics can be used as a yardstick in devising efficient Hardware Trojan detection methods. The crux of this study is a novel method for identification of susceptible nets that are prone to Hardware Trojan insertions in a logic circuit. The study also presents a comprehensive analysis of the impact on testability parameters as a result of Hardware Trojans in the identified susceptible nets. The method utilises the testability parameters of nets to define threshold values for isolating susceptible nets in a design. The study details out the impact of the number of trigger inputs as well as the distribution of trigger nets on the testability metrics of digital circuits.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"14 4\",\"pages\":\"158-165\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/iet-cdt.2019.0217\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0217\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-cdt.2019.0217","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

近年来,将通常被称为硬件木马的恶意电路插入到原始集成电路(IC)设计中以改变功能一直是一个主要问题。因此,多年来,研究人员提出了多种技术来对抗这些恶意威胁。任何逻辑电路中难以测试的网络都最容易受到硬件木马的插入。可测试性分析是识别逻辑电路中这些难以测试的网络的过程。可测试性分析是通过可测试性度量,即可控性和可观测性来实现的。可测试性度量可以用作设计高效硬件特洛伊木马检测方法的标准。这项研究的关键是一种新的方法来识别逻辑电路中容易插入硬件特洛伊木马的易感网络。该研究还对已识别的易感网络中的硬件木马对可测试性参数的影响进行了全面分析。该方法利用网络的可测试性参数来定义用于在设计中隔离易感网络的阈值。该研究详细说明了触发输入的数量以及触发网络的分布对数字电路可测试性指标的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sensitivity analysis of testability parameters for secure IC design

Sensitivity analysis of testability parameters for secure IC design

Insertion of malicious circuits commonly known as Hardware Trojans into an original integrated circuit (IC) design to alter the functionality has been a major concern in recent years. As a result, over the years multiple techniques have been suggested by researchers to combat these malicious threats. Hard to test nets in any logic circuit are the most vulnerable to insertion of Hardware Trojans. Testability analysis is the process of identification of these hard to test nets in a logic circuit. Testability analysis is achieved through the testability metrics namely controllability and observability. Testability metrics can be used as a yardstick in devising efficient Hardware Trojan detection methods. The crux of this study is a novel method for identification of susceptible nets that are prone to Hardware Trojan insertions in a logic circuit. The study also presents a comprehensive analysis of the impact on testability parameters as a result of Hardware Trojans in the identified susceptible nets. The method utilises the testability parameters of nets to define threshold values for isolating susceptible nets in a design. The study details out the impact of the number of trigger inputs as well as the distribution of trigger nets on the testability metrics of digital circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信