Alba Cervantes-Loreto, Abigail I. Pastore, Christopher R. P. Brown, Michelle L. Marraffini, Clement Aldebert, Margaret M. Mayfield, Daniel B. Stouffer
{"title":"环境背景、参数敏感性和结构敏感性对年度植物共存的影响预测","authors":"Alba Cervantes-Loreto, Abigail I. Pastore, Christopher R. P. Brown, Michelle L. Marraffini, Clement Aldebert, Margaret M. Mayfield, Daniel B. Stouffer","doi":"10.1002/ecm.1592","DOIUrl":null,"url":null,"abstract":"<p>Predicting the outcome of interactions between species is central to our current understanding of diversity maintenance. However, we have limited information about the robustness of many model-based predictions of species coexistence. This limitation is partly because several sources of uncertainty are often ignored when making predictions. Here, we introduce a framework to simultaneously explore how different mathematical models, different environmental contexts, and parameter uncertainty impact the probability of predicting species coexistence. Using a set of pairwise competition experiments on annual plants, we provide direct evidence that subtle differences between models lead to contrasting predictions of both coexistence and competitive exclusion. We also show that the effects of environmental context dependency and parameter uncertainty on predictions of species coexistence are not independent of the model used to describe population dynamics. Our work suggests that predictions of species coexistence and extrapolations thereof may be particularly vulnerable to these underappreciated founts of uncertainty.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 4","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental context, parameter sensitivity, and structural sensitivity impact predictions of annual-plant coexistence\",\"authors\":\"Alba Cervantes-Loreto, Abigail I. Pastore, Christopher R. P. Brown, Michelle L. Marraffini, Clement Aldebert, Margaret M. Mayfield, Daniel B. Stouffer\",\"doi\":\"10.1002/ecm.1592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting the outcome of interactions between species is central to our current understanding of diversity maintenance. However, we have limited information about the robustness of many model-based predictions of species coexistence. This limitation is partly because several sources of uncertainty are often ignored when making predictions. Here, we introduce a framework to simultaneously explore how different mathematical models, different environmental contexts, and parameter uncertainty impact the probability of predicting species coexistence. Using a set of pairwise competition experiments on annual plants, we provide direct evidence that subtle differences between models lead to contrasting predictions of both coexistence and competitive exclusion. We also show that the effects of environmental context dependency and parameter uncertainty on predictions of species coexistence are not independent of the model used to describe population dynamics. Our work suggests that predictions of species coexistence and extrapolations thereof may be particularly vulnerable to these underappreciated founts of uncertainty.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"93 4\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1592\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1592","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Environmental context, parameter sensitivity, and structural sensitivity impact predictions of annual-plant coexistence
Predicting the outcome of interactions between species is central to our current understanding of diversity maintenance. However, we have limited information about the robustness of many model-based predictions of species coexistence. This limitation is partly because several sources of uncertainty are often ignored when making predictions. Here, we introduce a framework to simultaneously explore how different mathematical models, different environmental contexts, and parameter uncertainty impact the probability of predicting species coexistence. Using a set of pairwise competition experiments on annual plants, we provide direct evidence that subtle differences between models lead to contrasting predictions of both coexistence and competitive exclusion. We also show that the effects of environmental context dependency and parameter uncertainty on predictions of species coexistence are not independent of the model used to describe population dynamics. Our work suggests that predictions of species coexistence and extrapolations thereof may be particularly vulnerable to these underappreciated founts of uncertainty.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.