家蚕作为模式生物的研究进展

IF 1.6 4区 农林科学 Q2 ENTOMOLOGY
Hashim Ashraf, Ayesha Qamar
{"title":"家蚕作为模式生物的研究进展","authors":"Hashim Ashraf,&nbsp;Ayesha Qamar","doi":"10.1111/phen.12421","DOIUrl":null,"url":null,"abstract":"<p><i>Bombyx mori</i> Linnaeus, 1758 (Lepidoptera: Bombycidae), a very important economical insect and backbone of the silk industry, is fully reliant on humans for its life cycle. It has short life span, possessing many genes having high degree of homology with human disease-causing genes, low breeding and maintenance cost, has less ethical issues associated with it and has also got its genome fully sequenced. Because of these characteristics, it has been recognized as an alternate invertebrate model organism candidate for use in life science research. It has been successfully used as an alternative invertebrate model organism in a variety of scientific domains, including human disease models, environmental monitoring models, epigenetic models and microbial drug screening and discovery models, since the last decade. This newly emerged model has given promising results so far in its short journey and has a tremendous future prospect of establishing itself as a successful model just like the classical invertebrate models, <i>Drosophila melanogaster</i> Meigen, 1830 (Diptera: Drosophilidae) and <i>Caenorhabditis elegans</i> Maupas, 1900 (Rhabditida: Rhabditidae). The use of the silkworm <i>B. mori</i> as a model organism in areas linked to human health and disease is reviewed here.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"48 4","pages":"107-121"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silkworm Bombyx mori as a model organism: A review\",\"authors\":\"Hashim Ashraf,&nbsp;Ayesha Qamar\",\"doi\":\"10.1111/phen.12421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Bombyx mori</i> Linnaeus, 1758 (Lepidoptera: Bombycidae), a very important economical insect and backbone of the silk industry, is fully reliant on humans for its life cycle. It has short life span, possessing many genes having high degree of homology with human disease-causing genes, low breeding and maintenance cost, has less ethical issues associated with it and has also got its genome fully sequenced. Because of these characteristics, it has been recognized as an alternate invertebrate model organism candidate for use in life science research. It has been successfully used as an alternative invertebrate model organism in a variety of scientific domains, including human disease models, environmental monitoring models, epigenetic models and microbial drug screening and discovery models, since the last decade. This newly emerged model has given promising results so far in its short journey and has a tremendous future prospect of establishing itself as a successful model just like the classical invertebrate models, <i>Drosophila melanogaster</i> Meigen, 1830 (Diptera: Drosophilidae) and <i>Caenorhabditis elegans</i> Maupas, 1900 (Rhabditida: Rhabditidae). The use of the silkworm <i>B. mori</i> as a model organism in areas linked to human health and disease is reviewed here.</p>\",\"PeriodicalId\":20081,\"journal\":{\"name\":\"Physiological Entomology\",\"volume\":\"48 4\",\"pages\":\"107-121\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/phen.12421\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12421","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

家蚕(Lepidoptera:Bombycidae)是一种非常重要的经济昆虫,也是丝绸工业的支柱,其生命周期完全依赖人类。它的寿命短,拥有许多与人类致病基因高度同源的基因,繁殖和维护成本低,与它相关的伦理问题较少,而且它的基因组已经完全测序。由于这些特性,它已被公认为生命科学研究中使用的替代无脊椎动物模式生物候选者。自过去十年以来,它已被成功用作各种科学领域的替代无脊椎动物模式生物,包括人类疾病模型、环境监测模型、表观遗传学模型以及微生物药物筛选和发现模型。到目前为止,这个新出现的模型在其短暂的旅程中取得了有希望的结果,并有着巨大的未来前景,可以像经典的无脊椎动物模型一样,将自己打造成一个成功的模型,即黑腹果蝇,1830(双翅目:果蝇科)和秀丽隐杆线虫,1900(鼠尾目:鼠尾科)。本文综述了家蚕作为模式生物在与人类健康和疾病相关领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Silkworm Bombyx mori as a model organism: A review

Silkworm Bombyx mori as a model organism: A review

Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae), a very important economical insect and backbone of the silk industry, is fully reliant on humans for its life cycle. It has short life span, possessing many genes having high degree of homology with human disease-causing genes, low breeding and maintenance cost, has less ethical issues associated with it and has also got its genome fully sequenced. Because of these characteristics, it has been recognized as an alternate invertebrate model organism candidate for use in life science research. It has been successfully used as an alternative invertebrate model organism in a variety of scientific domains, including human disease models, environmental monitoring models, epigenetic models and microbial drug screening and discovery models, since the last decade. This newly emerged model has given promising results so far in its short journey and has a tremendous future prospect of establishing itself as a successful model just like the classical invertebrate models, Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) and Caenorhabditis elegans Maupas, 1900 (Rhabditida: Rhabditidae). The use of the silkworm B. mori as a model organism in areas linked to human health and disease is reviewed here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological Entomology
Physiological Entomology 生物-昆虫学
CiteScore
2.80
自引率
6.70%
发文量
21
审稿时长
>12 weeks
期刊介绍: Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to: -experimental analysis of behaviour- behavioural physiology and biochemistry- neurobiology and sensory physiology- general physiology- circadian rhythms and photoperiodism- chemical ecology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信