玉米歉收后施用氮肥残留量的评价

Daniel W. Sweeney, Dorivar Ruiz Diaz
{"title":"玉米歉收后施用氮肥残留量的评价","authors":"Daniel W. Sweeney, Dorivar Ruiz Diaz","doi":"10.2134/CM-2014-0005-BR","DOIUrl":null,"url":null,"abstract":"In much of the Midwest in 2012, extreme hot and dry conditions reduced crop yields, especially corn (Zea mays L.) (USDA-NAAS, 2013). Drought-induced, low-yielding conditions likely resulted in low nitrogen uptake by the crops and the potential for unused fertilizer N left in the soil. However, the potential carryover of unused N fertilizer is uncertain because of the dynamics of N cycling. In 2012, a study was initiated to determine the effect of N rates and nitrification inhibitors on no-till short-season corn. The study was conducted at the Kansas State University Southeast Agricultural Research Center on a Parsons silt loam, a typical claypan soil of the area. The experimental design was a split-plot arrangement of a randomized complete block with four replications with N rates as the whole plots and nitrification inhibitors as the subplots, plus an untreated control. All N was subsurface banded (knifed) as urea-ammonium nitrate (28% N) at a 4-inch depth on 10 Apr. 2012 at rates of 60, 120, 180, and 240 lb/acre. In addition, the knife blades without fertilizer were passed through the no-N control plots. The nitrification inhibitors were (i) none, (ii) Instinct at 35 oz/acre, (iii) Koch experimental at 128 oz/acre, and (iv) Koch experimental at 256 oz/acre. Partially because of replanting in early May, corn growth before silking and during much of the reproductive growth fell in a period from 22 June to 4 Aug. 2012 with total rainfall of 0.75 inches and average maximum air temperature of 99.4°F which is less than 20% of the rain and approximately 10°F hotter than the 30-year average. These conditions resulted in corn yields less than 27 bu/acre with no response to nitrification inhibitors and a slight decline in yields as N rate increased (data not shown). A typical rotation of the area is to follow corn with winter wheat (Triticum aestivum L.). Since the 2012 experiment would not be repeated, the corn crop was followed with a hard red winter wheat cultivar, ‘Everest’ drilled on 12 Oct. 2012 with no added fertilizer and no tillage. To study the residual effect of the N treatments, the same plots with the same experimental Published in Crop Management DOI 10.2134/CM-2014-0005-BR © 2014 American Society of Agronomy and Crop Science Society of America 5585 Guilford Rd., Madison, WI 53711","PeriodicalId":100342,"journal":{"name":"Crop Management","volume":"13 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2134/CM-2014-0005-BR","citationCount":"1","resultStr":"{\"title\":\"Assessing the Residual from Fertilizer Nitrogen Applied to Failed Corn on the Following Wheat Crop\",\"authors\":\"Daniel W. Sweeney, Dorivar Ruiz Diaz\",\"doi\":\"10.2134/CM-2014-0005-BR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In much of the Midwest in 2012, extreme hot and dry conditions reduced crop yields, especially corn (Zea mays L.) (USDA-NAAS, 2013). Drought-induced, low-yielding conditions likely resulted in low nitrogen uptake by the crops and the potential for unused fertilizer N left in the soil. However, the potential carryover of unused N fertilizer is uncertain because of the dynamics of N cycling. In 2012, a study was initiated to determine the effect of N rates and nitrification inhibitors on no-till short-season corn. The study was conducted at the Kansas State University Southeast Agricultural Research Center on a Parsons silt loam, a typical claypan soil of the area. The experimental design was a split-plot arrangement of a randomized complete block with four replications with N rates as the whole plots and nitrification inhibitors as the subplots, plus an untreated control. All N was subsurface banded (knifed) as urea-ammonium nitrate (28% N) at a 4-inch depth on 10 Apr. 2012 at rates of 60, 120, 180, and 240 lb/acre. In addition, the knife blades without fertilizer were passed through the no-N control plots. The nitrification inhibitors were (i) none, (ii) Instinct at 35 oz/acre, (iii) Koch experimental at 128 oz/acre, and (iv) Koch experimental at 256 oz/acre. Partially because of replanting in early May, corn growth before silking and during much of the reproductive growth fell in a period from 22 June to 4 Aug. 2012 with total rainfall of 0.75 inches and average maximum air temperature of 99.4°F which is less than 20% of the rain and approximately 10°F hotter than the 30-year average. These conditions resulted in corn yields less than 27 bu/acre with no response to nitrification inhibitors and a slight decline in yields as N rate increased (data not shown). A typical rotation of the area is to follow corn with winter wheat (Triticum aestivum L.). Since the 2012 experiment would not be repeated, the corn crop was followed with a hard red winter wheat cultivar, ‘Everest’ drilled on 12 Oct. 2012 with no added fertilizer and no tillage. To study the residual effect of the N treatments, the same plots with the same experimental Published in Crop Management DOI 10.2134/CM-2014-0005-BR © 2014 American Society of Agronomy and Crop Science Society of America 5585 Guilford Rd., Madison, WI 53711\",\"PeriodicalId\":100342,\"journal\":{\"name\":\"Crop Management\",\"volume\":\"13 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2134/CM-2014-0005-BR\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.2134/CM-2014-0005-BR\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.2134/CM-2014-0005-BR","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Residual from Fertilizer Nitrogen Applied to Failed Corn on the Following Wheat Crop
In much of the Midwest in 2012, extreme hot and dry conditions reduced crop yields, especially corn (Zea mays L.) (USDA-NAAS, 2013). Drought-induced, low-yielding conditions likely resulted in low nitrogen uptake by the crops and the potential for unused fertilizer N left in the soil. However, the potential carryover of unused N fertilizer is uncertain because of the dynamics of N cycling. In 2012, a study was initiated to determine the effect of N rates and nitrification inhibitors on no-till short-season corn. The study was conducted at the Kansas State University Southeast Agricultural Research Center on a Parsons silt loam, a typical claypan soil of the area. The experimental design was a split-plot arrangement of a randomized complete block with four replications with N rates as the whole plots and nitrification inhibitors as the subplots, plus an untreated control. All N was subsurface banded (knifed) as urea-ammonium nitrate (28% N) at a 4-inch depth on 10 Apr. 2012 at rates of 60, 120, 180, and 240 lb/acre. In addition, the knife blades without fertilizer were passed through the no-N control plots. The nitrification inhibitors were (i) none, (ii) Instinct at 35 oz/acre, (iii) Koch experimental at 128 oz/acre, and (iv) Koch experimental at 256 oz/acre. Partially because of replanting in early May, corn growth before silking and during much of the reproductive growth fell in a period from 22 June to 4 Aug. 2012 with total rainfall of 0.75 inches and average maximum air temperature of 99.4°F which is less than 20% of the rain and approximately 10°F hotter than the 30-year average. These conditions resulted in corn yields less than 27 bu/acre with no response to nitrification inhibitors and a slight decline in yields as N rate increased (data not shown). A typical rotation of the area is to follow corn with winter wheat (Triticum aestivum L.). Since the 2012 experiment would not be repeated, the corn crop was followed with a hard red winter wheat cultivar, ‘Everest’ drilled on 12 Oct. 2012 with no added fertilizer and no tillage. To study the residual effect of the N treatments, the same plots with the same experimental Published in Crop Management DOI 10.2134/CM-2014-0005-BR © 2014 American Society of Agronomy and Crop Science Society of America 5585 Guilford Rd., Madison, WI 53711
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信