FAD点和AD线上的Blume–Emery–Griffiths模型

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Paulo C. Lima, Riccardo Mariani, Aldo Procacci, Benedetto Scoppola
{"title":"FAD点和AD线上的Blume–Emery–Griffiths模型","authors":"Paulo C. Lima,&nbsp;Riccardo Mariani,&nbsp;Aldo Procacci,&nbsp;Benedetto Scoppola","doi":"10.1007/s10955-023-03181-9","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse the Blume–Emery–Griffiths (BEG) model on the lattice <span>\\({\\mathbb {Z}}^d\\)</span> on the ferromagnetic-antiquadrupolar-disordered (FAD) point and on the antiquadrupolar-disordered (AD) line. In our analysis on the FAD point, we introduce a Gibbs sampler of the ground states at zero temperature, and we exploit it in two different ways: first, we perform via perfect sampling an empirical evaluation of the spontaneous magnetization at zero temperature, finding a non-zero value in <span>\\(d=3\\)</span> and a vanishing value in <span>\\(d=2\\)</span>. Second, using a careful coupling with the Bernoulli site percolation model in <span>\\(d=2\\)</span>, we prove rigorously that under imposing <span>\\(+\\)</span> boundary conditions, the magnetization in the center of a square box tends to zero in the thermodynamical limit and the two-point correlations decay exponentially. Also, using again a coupling argument, we show that there exists a unique zero-temperature infinite-volume Gibbs measure for the BEG. In our analysis of the AD line we restrict ourselves to <span>\\(d=2\\)</span> and, by comparing the BEG model with a Bernoulli site percolation in a matching graph of <span>\\({\\mathbb {Z}}^2\\)</span>, we get a condition for the vanishing of the infinite-volume limit magnetization improving, for low temperatures, earlier results obtained via expansion techniques.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"190 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Blume–Emery–Griffiths Model on the FAD Point and on the AD Line\",\"authors\":\"Paulo C. Lima,&nbsp;Riccardo Mariani,&nbsp;Aldo Procacci,&nbsp;Benedetto Scoppola\",\"doi\":\"10.1007/s10955-023-03181-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyse the Blume–Emery–Griffiths (BEG) model on the lattice <span>\\\\({\\\\mathbb {Z}}^d\\\\)</span> on the ferromagnetic-antiquadrupolar-disordered (FAD) point and on the antiquadrupolar-disordered (AD) line. In our analysis on the FAD point, we introduce a Gibbs sampler of the ground states at zero temperature, and we exploit it in two different ways: first, we perform via perfect sampling an empirical evaluation of the spontaneous magnetization at zero temperature, finding a non-zero value in <span>\\\\(d=3\\\\)</span> and a vanishing value in <span>\\\\(d=2\\\\)</span>. Second, using a careful coupling with the Bernoulli site percolation model in <span>\\\\(d=2\\\\)</span>, we prove rigorously that under imposing <span>\\\\(+\\\\)</span> boundary conditions, the magnetization in the center of a square box tends to zero in the thermodynamical limit and the two-point correlations decay exponentially. Also, using again a coupling argument, we show that there exists a unique zero-temperature infinite-volume Gibbs measure for the BEG. In our analysis of the AD line we restrict ourselves to <span>\\\\(d=2\\\\)</span> and, by comparing the BEG model with a Bernoulli site percolation in a matching graph of <span>\\\\({\\\\mathbb {Z}}^2\\\\)</span>, we get a condition for the vanishing of the infinite-volume limit magnetization improving, for low temperatures, earlier results obtained via expansion techniques.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"190 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-023-03181-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-023-03181-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了在铁磁反极性无序(FAD)点和反极性有序(AD)线上的晶格({\mathbb{Z}}^d\)上的Blume–Emery–Griffiths(BEG)模型。在我们对FAD点的分析中,我们引入了零温度下基态的吉布斯采样器,并以两种不同的方式利用它:首先,我们通过完美采样对零温度下的自发磁化进行经验评估,在\(d=3\)中找到一个非零值,在\。其次,通过与(d=2\)中的伯努利站点渗流模型的仔细耦合,我们严格证明了在强加的(+\)边界条件下,方盒中心的磁化强度在热力学极限下趋于零,并且两点相关性呈指数衰减。此外,再次使用耦合论点,我们证明了BEG存在一个唯一的零温度无限体积吉布斯测度。在我们对AD线的分析中,我们将自己限制在\(d=2\),并且通过将BEG模型与匹配图\({\mathbb{Z}}^2\)中的伯努利位点渗流进行比较,我们得到了无限体积极限磁化消失的条件,对于低温,改进了通过扩展技术获得的早期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Blume–Emery–Griffiths Model on the FAD Point and on the AD Line

The Blume–Emery–Griffiths Model on the FAD Point and on the AD Line

We analyse the Blume–Emery–Griffiths (BEG) model on the lattice \({\mathbb {Z}}^d\) on the ferromagnetic-antiquadrupolar-disordered (FAD) point and on the antiquadrupolar-disordered (AD) line. In our analysis on the FAD point, we introduce a Gibbs sampler of the ground states at zero temperature, and we exploit it in two different ways: first, we perform via perfect sampling an empirical evaluation of the spontaneous magnetization at zero temperature, finding a non-zero value in \(d=3\) and a vanishing value in \(d=2\). Second, using a careful coupling with the Bernoulli site percolation model in \(d=2\), we prove rigorously that under imposing \(+\) boundary conditions, the magnetization in the center of a square box tends to zero in the thermodynamical limit and the two-point correlations decay exponentially. Also, using again a coupling argument, we show that there exists a unique zero-temperature infinite-volume Gibbs measure for the BEG. In our analysis of the AD line we restrict ourselves to \(d=2\) and, by comparing the BEG model with a Bernoulli site percolation in a matching graph of \({\mathbb {Z}}^2\), we get a condition for the vanishing of the infinite-volume limit magnetization improving, for low temperatures, earlier results obtained via expansion techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信