{"title":"Euler方程Gavrilov解驱动下流体粒子的近环面、周期和准周期运动","authors":"Pietro Baldi","doi":"10.1007/s00021-023-00836-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the smooth, compactly supported solutions of the steady 3D Euler equations of incompressible fluids constructed by Gavrilov (Geom Funct Anal (GAFA) 29(1):190–197, 2019), and we study the corresponding fluid particle dynamics. This is an <span>ode</span> analysis, which contributes to the description of Gavrilov’s vector field.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00836-1.pdf","citationCount":"1","resultStr":"{\"title\":\"Nearly Toroidal, Periodic and Quasi-periodic Motions of Fluid Particles Driven by the Gavrilov Solutions of the Euler Equations\",\"authors\":\"Pietro Baldi\",\"doi\":\"10.1007/s00021-023-00836-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the smooth, compactly supported solutions of the steady 3D Euler equations of incompressible fluids constructed by Gavrilov (Geom Funct Anal (GAFA) 29(1):190–197, 2019), and we study the corresponding fluid particle dynamics. This is an <span>ode</span> analysis, which contributes to the description of Gavrilov’s vector field.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-023-00836-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00836-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00836-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nearly Toroidal, Periodic and Quasi-periodic Motions of Fluid Particles Driven by the Gavrilov Solutions of the Euler Equations
We consider the smooth, compactly supported solutions of the steady 3D Euler equations of incompressible fluids constructed by Gavrilov (Geom Funct Anal (GAFA) 29(1):190–197, 2019), and we study the corresponding fluid particle dynamics. This is an ode analysis, which contributes to the description of Gavrilov’s vector field.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.