{"title":"高效肼氧化多孔Co0.85Se/rGO复合材料的制备","authors":"Lili Ren, Erwei Xie, Yonglian Qiao, Chen Liu, Xuefeng Zhang, Shilei Zhou, Zhongbao Feng","doi":"10.1007/s11581-023-05211-8","DOIUrl":null,"url":null,"abstract":"<div><p>The development of efficient and earth-abundant catalysts for hydrazine oxidation (HzOR) is of great significance for direct hydrazine fuel cell. In the present study, we report Co<sub>0.85</sub>Se/rGO electrocatalyst with nanoporous structure on rGO surface via electrodeposition. In comparison with Co<sub>0.85</sub>Se and nickel foam, Co<sub>0.85</sub>Se/rGO exhibits good hydrazine oxidation performance. A large current density of 981 mA cm<sup>−2</sup> at 0.6 V vs reversible hydrogen electrode, a low Tafel slope of 56.2 mV dec<sup>−1</sup>, almost 100% selectivity toward the complete hydrazine oxidation, and a high retention rate of 92.5% at a large current density of 50 mA cm<sup>−2</sup> during 24 h measurement can be observed, which is among the best values for Co-based HzOR catalysts that recently reported. Furthermore, the enhanced electrochemical mechanism of Co<sub>0.85</sub>Se/rGO toward HzOR was investigated, mainly contributed to its well-maintained nanoporous structure, larger electrochemically active surface area, high electrical conductivity, and superaerophobic nature of nanoporous surface.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"29 11","pages":"4817 - 4824"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of a porous Co0.85Se/rGO composite for efficient hydrazine oxidation\",\"authors\":\"Lili Ren, Erwei Xie, Yonglian Qiao, Chen Liu, Xuefeng Zhang, Shilei Zhou, Zhongbao Feng\",\"doi\":\"10.1007/s11581-023-05211-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of efficient and earth-abundant catalysts for hydrazine oxidation (HzOR) is of great significance for direct hydrazine fuel cell. In the present study, we report Co<sub>0.85</sub>Se/rGO electrocatalyst with nanoporous structure on rGO surface via electrodeposition. In comparison with Co<sub>0.85</sub>Se and nickel foam, Co<sub>0.85</sub>Se/rGO exhibits good hydrazine oxidation performance. A large current density of 981 mA cm<sup>−2</sup> at 0.6 V vs reversible hydrogen electrode, a low Tafel slope of 56.2 mV dec<sup>−1</sup>, almost 100% selectivity toward the complete hydrazine oxidation, and a high retention rate of 92.5% at a large current density of 50 mA cm<sup>−2</sup> during 24 h measurement can be observed, which is among the best values for Co-based HzOR catalysts that recently reported. Furthermore, the enhanced electrochemical mechanism of Co<sub>0.85</sub>Se/rGO toward HzOR was investigated, mainly contributed to its well-maintained nanoporous structure, larger electrochemically active surface area, high electrical conductivity, and superaerophobic nature of nanoporous surface.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"29 11\",\"pages\":\"4817 - 4824\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-023-05211-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-023-05211-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
摘要
开发高效、富土的肼氧化催化剂对直接肼燃料电池具有重要意义。在本研究中,我们报道了通过电沉积在rGO表面具有纳米多孔结构的Co0.85Se/rGO电催化剂。与Co0.85Se和泡沫镍相比,Co0.85Se/rGO表现出良好的肼氧化性能。与可逆氢电极相比,在0.6 V下可观察到981 mA cm−2的大电流密度,56.2 mV dec−1的低Tafel斜率,对肼完全氧化的选择性几乎为100%,在50 mA cm−2中24小时测量的高保留率为92.5%,这是最近报道的钴基HzOR催化剂的最佳值之一。此外,研究了Co0.85Se/rGO对HzOR的增强电化学机制,主要是由于其良好的纳米多孔结构、更大的电化学活性表面积、高电导率和纳米多孔表面的超疏水性。
Fabrication of a porous Co0.85Se/rGO composite for efficient hydrazine oxidation
The development of efficient and earth-abundant catalysts for hydrazine oxidation (HzOR) is of great significance for direct hydrazine fuel cell. In the present study, we report Co0.85Se/rGO electrocatalyst with nanoporous structure on rGO surface via electrodeposition. In comparison with Co0.85Se and nickel foam, Co0.85Se/rGO exhibits good hydrazine oxidation performance. A large current density of 981 mA cm−2 at 0.6 V vs reversible hydrogen electrode, a low Tafel slope of 56.2 mV dec−1, almost 100% selectivity toward the complete hydrazine oxidation, and a high retention rate of 92.5% at a large current density of 50 mA cm−2 during 24 h measurement can be observed, which is among the best values for Co-based HzOR catalysts that recently reported. Furthermore, the enhanced electrochemical mechanism of Co0.85Se/rGO toward HzOR was investigated, mainly contributed to its well-maintained nanoporous structure, larger electrochemically active surface area, high electrical conductivity, and superaerophobic nature of nanoporous surface.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.