多相二硫化钼单层:一种很有前途的镁离子电池负极材料

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2023-09-12 DOI:10.1007/s11581-023-05201-w
Nandhini Panjulingam, Senthilkumar Lakshmipathi
{"title":"多相二硫化钼单层:一种很有前途的镁离子电池负极材料","authors":"Nandhini Panjulingam,&nbsp;Senthilkumar Lakshmipathi","doi":"10.1007/s11581-023-05201-w","DOIUrl":null,"url":null,"abstract":"<div><p>Given the potential availability, non-toxicity, and environmental acceptability of alternatives to lithium-ion batteries (LIBs), secondary batteries utilizing magnesium (Mg) ions have garnered significant attention. Numerous recent studies have focused on identifying suitable anode materials for post-lithium-ion batteries, particularly magnesium-ion batteries. In this regard, we carried out a theoretical study to investigate the 2D multiphase molybdenum disulphide (1T/2H MoS<sub>2</sub>) anode material using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Our observations confirmed the efficacy of this material as an anode. The results highlight its exceptional stability, high binding energy, enhanced metallic characteristics following Mg adsorption, theoretical specific capacity, and remarkably low diffusion barriers. Notably, the anode material exhibits an ultralow energy barrier of 0.04 eV, surpassing that of extensively studied 2D materials. By employing a wide range of Mg<sup>2+</sup> concentration during the charging process, we achieved a high specific capacity of 4496.77 mAh g<sup>−1</sup> ions, coupled with an average operating voltage of 0.04 V. These findings provide valuable insights for the experimental design of exceptional anode materials.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"29 11","pages":"4751 - 4764"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiphase MoS2 monolayer: A promising anode material for Mg-Ion batteries\",\"authors\":\"Nandhini Panjulingam,&nbsp;Senthilkumar Lakshmipathi\",\"doi\":\"10.1007/s11581-023-05201-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the potential availability, non-toxicity, and environmental acceptability of alternatives to lithium-ion batteries (LIBs), secondary batteries utilizing magnesium (Mg) ions have garnered significant attention. Numerous recent studies have focused on identifying suitable anode materials for post-lithium-ion batteries, particularly magnesium-ion batteries. In this regard, we carried out a theoretical study to investigate the 2D multiphase molybdenum disulphide (1T/2H MoS<sub>2</sub>) anode material using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Our observations confirmed the efficacy of this material as an anode. The results highlight its exceptional stability, high binding energy, enhanced metallic characteristics following Mg adsorption, theoretical specific capacity, and remarkably low diffusion barriers. Notably, the anode material exhibits an ultralow energy barrier of 0.04 eV, surpassing that of extensively studied 2D materials. By employing a wide range of Mg<sup>2+</sup> concentration during the charging process, we achieved a high specific capacity of 4496.77 mAh g<sup>−1</sup> ions, coupled with an average operating voltage of 0.04 V. These findings provide valuable insights for the experimental design of exceptional anode materials.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"29 11\",\"pages\":\"4751 - 4764\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-023-05201-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-023-05201-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

考虑到锂离子电池(LIBs)替代品的潜在可用性、无毒性和环境可接受性,利用镁(Mg)离子的二次电池引起了极大的关注。最近的许多研究都集中在为后锂离子电池,特别是镁离子电池确定合适的阳极材料上。在这方面,我们使用密度泛函理论(DFT)和从头算分子动力学(AIMD)模拟对2D多相二硫化钼(1T/2H-MoS2)阳极材料进行了理论研究。我们的观察证实了这种材料作为阳极的功效。结果突出了其优异的稳定性、高结合能、镁吸附后增强的金属特性、理论比容量和显著低的扩散势垒。值得注意的是,阳极材料表现出0.04eV的超低能垒,超过了广泛研究的2D材料。通过在充电过程中采用宽范围的Mg2+浓度,我们获得了4496.77 mAh g−1离子的高比容量,加上0.04 V的平均工作电压。这些发现为特殊阳极材料的实验设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiphase MoS2 monolayer: A promising anode material for Mg-Ion batteries

Given the potential availability, non-toxicity, and environmental acceptability of alternatives to lithium-ion batteries (LIBs), secondary batteries utilizing magnesium (Mg) ions have garnered significant attention. Numerous recent studies have focused on identifying suitable anode materials for post-lithium-ion batteries, particularly magnesium-ion batteries. In this regard, we carried out a theoretical study to investigate the 2D multiphase molybdenum disulphide (1T/2H MoS2) anode material using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Our observations confirmed the efficacy of this material as an anode. The results highlight its exceptional stability, high binding energy, enhanced metallic characteristics following Mg adsorption, theoretical specific capacity, and remarkably low diffusion barriers. Notably, the anode material exhibits an ultralow energy barrier of 0.04 eV, surpassing that of extensively studied 2D materials. By employing a wide range of Mg2+ concentration during the charging process, we achieved a high specific capacity of 4496.77 mAh g−1 ions, coupled with an average operating voltage of 0.04 V. These findings provide valuable insights for the experimental design of exceptional anode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信