关于各向同性超材料的格林函数

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
V. V. Fisanov
{"title":"关于各向同性超材料的格林函数","authors":"V. V. Fisanov","doi":"10.1007/s11182-023-02993-2","DOIUrl":null,"url":null,"abstract":"<div><div><p>The Green’s functions are compared for the Maxwell, Beltrami and Helmholtz equations as applied to effective infinite isotropic media, including electromagnetic metamaterials. The Dyadic and scalar Green’s functions are calculated based on the 3D and 2D Fourier transforms and the residue theory without using the so-called concept of a negative refractive index.</p></div></div>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"66 6","pages":"683 - 688"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Green’s Functions for Isotropic Metamaterials\",\"authors\":\"V. V. Fisanov\",\"doi\":\"10.1007/s11182-023-02993-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>The Green’s functions are compared for the Maxwell, Beltrami and Helmholtz equations as applied to effective infinite isotropic media, including electromagnetic metamaterials. The Dyadic and scalar Green’s functions are calculated based on the 3D and 2D Fourier transforms and the residue theory without using the so-called concept of a negative refractive index.</p></div></div>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"66 6\",\"pages\":\"683 - 688\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-023-02993-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-023-02993-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

比较了应用于有效无限各向同性介质(包括电磁超材料)的Maxwell、Beltrami和Helmholtz方程的Green函数。在不使用所谓的负折射率概念的情况下,基于3D和2D傅立叶变换以及残差理论来计算并矢和标量格林函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Green’s Functions for Isotropic Metamaterials

The Green’s functions are compared for the Maxwell, Beltrami and Helmholtz equations as applied to effective infinite isotropic media, including electromagnetic metamaterials. The Dyadic and scalar Green’s functions are calculated based on the 3D and 2D Fourier transforms and the residue theory without using the so-called concept of a negative refractive index.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信