{"title":"二维有界域中零电阻率全可压缩磁流体动力学方程奇异性的形成","authors":"Xin Zhong","doi":"10.1007/s10255-023-1094-z","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with singularity formation of strong solutions to the two-dimensional (2D) full compressible magnetohydrodynamic equations with zero resistivity in a bounded domain. By energy method and critical Sobolev inequalities of logarithmic type, we show that the strong solution exists globally if the temporal integral of the maximum norm of the deformation tensor is bounded. Our result is the same as Ponce’s criterion for 3D incompressible Euler equations. In particular, it is independent of the magnetic field and temperature. Additionally, the initial vacuum states are allowed.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Singularity for Full Compressible Magnetohydrodynamic Equations with Zero Resistivity in Two Dimensional Bounded Domains\",\"authors\":\"Xin Zhong\",\"doi\":\"10.1007/s10255-023-1094-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We are concerned with singularity formation of strong solutions to the two-dimensional (2D) full compressible magnetohydrodynamic equations with zero resistivity in a bounded domain. By energy method and critical Sobolev inequalities of logarithmic type, we show that the strong solution exists globally if the temporal integral of the maximum norm of the deformation tensor is bounded. Our result is the same as Ponce’s criterion for 3D incompressible Euler equations. In particular, it is independent of the magnetic field and temperature. Additionally, the initial vacuum states are allowed.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1094-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1094-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formation of Singularity for Full Compressible Magnetohydrodynamic Equations with Zero Resistivity in Two Dimensional Bounded Domains
We are concerned with singularity formation of strong solutions to the two-dimensional (2D) full compressible magnetohydrodynamic equations with zero resistivity in a bounded domain. By energy method and critical Sobolev inequalities of logarithmic type, we show that the strong solution exists globally if the temporal integral of the maximum norm of the deformation tensor is bounded. Our result is the same as Ponce’s criterion for 3D incompressible Euler equations. In particular, it is independent of the magnetic field and temperature. Additionally, the initial vacuum states are allowed.