二维有界域中零电阻率全可压缩磁流体动力学方程奇异性的形成

Pub Date : 2023-11-08 DOI:10.1007/s10255-023-1094-z
Xin Zhong
{"title":"二维有界域中零电阻率全可压缩磁流体动力学方程奇异性的形成","authors":"Xin Zhong","doi":"10.1007/s10255-023-1094-z","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with singularity formation of strong solutions to the two-dimensional (2D) full compressible magnetohydrodynamic equations with zero resistivity in a bounded domain. By energy method and critical Sobolev inequalities of logarithmic type, we show that the strong solution exists globally if the temporal integral of the maximum norm of the deformation tensor is bounded. Our result is the same as Ponce’s criterion for 3D incompressible Euler equations. In particular, it is independent of the magnetic field and temperature. Additionally, the initial vacuum states are allowed.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Singularity for Full Compressible Magnetohydrodynamic Equations with Zero Resistivity in Two Dimensional Bounded Domains\",\"authors\":\"Xin Zhong\",\"doi\":\"10.1007/s10255-023-1094-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We are concerned with singularity formation of strong solutions to the two-dimensional (2D) full compressible magnetohydrodynamic equations with zero resistivity in a bounded domain. By energy method and critical Sobolev inequalities of logarithmic type, we show that the strong solution exists globally if the temporal integral of the maximum norm of the deformation tensor is bounded. Our result is the same as Ponce’s criterion for 3D incompressible Euler equations. In particular, it is independent of the magnetic field and temperature. Additionally, the initial vacuum states are allowed.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1094-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1094-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在有界域中具有零电阻率的二维(2D)完全可压缩磁流体动力学方程的强解的奇异性形成。利用能量方法和对数型临界Sobolev不等式,我们证明了如果变形张量的最大范数的时间积分是有界的,则强解是全局存在的。我们的结果与三维不可压缩Euler方程的Ponce准则相同。特别地,它与磁场和温度无关。此外,允许初始真空状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Formation of Singularity for Full Compressible Magnetohydrodynamic Equations with Zero Resistivity in Two Dimensional Bounded Domains

We are concerned with singularity formation of strong solutions to the two-dimensional (2D) full compressible magnetohydrodynamic equations with zero resistivity in a bounded domain. By energy method and critical Sobolev inequalities of logarithmic type, we show that the strong solution exists globally if the temporal integral of the maximum norm of the deformation tensor is bounded. Our result is the same as Ponce’s criterion for 3D incompressible Euler equations. In particular, it is independent of the magnetic field and temperature. Additionally, the initial vacuum states are allowed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信