二维热带气候模式的全球强解和大时间行为

Pub Date : 2023-11-08 DOI:10.1007/s10255-023-1090-3
Dong-juan Niu, Ying Wang
{"title":"二维热带气候模式的全球强解和大时间行为","authors":"Dong-juan Niu,&nbsp;Ying Wang","doi":"10.1007/s10255-023-1090-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we mainly deal with the global well-posedness and large-time behavior of the 2D tropical climate model with small initial data. We first establish the global well-posedness of solution in the Besov space, then we obtain the optimal decay rates of solutions by virtue of the frequency decomposition method. Specifically, for the low frequency part, we use the Fourier splitting method of Schonbek and the spectrum analysis method, and for the high frequency part, we use the global energy estimate and the behavior of exponentially decay operator.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Strong Solutions and Large-time Behavior of 2D Tropical Climate Model\",\"authors\":\"Dong-juan Niu,&nbsp;Ying Wang\",\"doi\":\"10.1007/s10255-023-1090-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we mainly deal with the global well-posedness and large-time behavior of the 2D tropical climate model with small initial data. We first establish the global well-posedness of solution in the Besov space, then we obtain the optimal decay rates of solutions by virtue of the frequency decomposition method. Specifically, for the low frequency part, we use the Fourier splitting method of Schonbek and the spectrum analysis method, and for the high frequency part, we use the global energy estimate and the behavior of exponentially decay operator.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1090-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1090-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究初始数据较小的二维热带气候模型的全局适定性和大时间行为。我们首先在Besov空间中建立了解的全局适定性,然后利用频率分解方法得到了解的最优衰变率。具体来说,对于低频部分,我们使用Schonbek的傅立叶分裂方法和频谱分析方法,对于高频部分,我们采用全局能量估计和指数衰减算子的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global Strong Solutions and Large-time Behavior of 2D Tropical Climate Model

In this paper we mainly deal with the global well-posedness and large-time behavior of the 2D tropical climate model with small initial data. We first establish the global well-posedness of solution in the Besov space, then we obtain the optimal decay rates of solutions by virtue of the frequency decomposition method. Specifically, for the low frequency part, we use the Fourier splitting method of Schonbek and the spectrum analysis method, and for the high frequency part, we use the global energy estimate and the behavior of exponentially decay operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信