接触延伸与同情

Pub Date : 2023-11-08 DOI:10.1007/s10255-023-1093-0
Qi-huai Liu, An Xie, Chao Wang
{"title":"接触延伸与同情","authors":"Qi-huai Liu,&nbsp;An Xie,&nbsp;Chao Wang","doi":"10.1007/s10255-023-1093-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper mainly studies the contact extension of conservative or dissipative systems, including some old and new results for wholeness. Then extension of contact system is corresponding to the symplectification of contact Hamiltonian system. This is a reciprocal process and the relation between symplectic system and contact system has been discussed. We have an interesting discovery that by adding a pure variable <i>p</i>, the slope of the tangent of the orbit, every differential system can be regarded as an independent subsystem of contact Hamiltonian system defined on the projection space of contact phase space.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact Extension and Symplectification\",\"authors\":\"Qi-huai Liu,&nbsp;An Xie,&nbsp;Chao Wang\",\"doi\":\"10.1007/s10255-023-1093-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper mainly studies the contact extension of conservative or dissipative systems, including some old and new results for wholeness. Then extension of contact system is corresponding to the symplectification of contact Hamiltonian system. This is a reciprocal process and the relation between symplectic system and contact system has been discussed. We have an interesting discovery that by adding a pure variable <i>p</i>, the slope of the tangent of the orbit, every differential system can be regarded as an independent subsystem of contact Hamiltonian system defined on the projection space of contact phase space.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1093-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1093-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究守恒或耗散系统的接触扩张,包括一些关于整体性的新老结果。然后,接触系统的扩张对应于接触哈密顿系统的共选择性。这是一个互易过程,并讨论了辛系统和接触系统之间的关系。我们有一个有趣的发现,通过添加纯变量p,即轨道切线的斜率,每个微分系统都可以被视为定义在接触相空间投影空间上的接触哈密顿系统的独立子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Contact Extension and Symplectification

This paper mainly studies the contact extension of conservative or dissipative systems, including some old and new results for wholeness. Then extension of contact system is corresponding to the symplectification of contact Hamiltonian system. This is a reciprocal process and the relation between symplectic system and contact system has been discussed. We have an interesting discovery that by adding a pure variable p, the slope of the tangent of the orbit, every differential system can be regarded as an independent subsystem of contact Hamiltonian system defined on the projection space of contact phase space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信