{"title":"具有L2约束的Schrödinger-Newton系统多峰解的不存在性","authors":"Qing Guo, Li-xiu Duan","doi":"10.1007/s10255-023-1086-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we are concerned with the the Schrödinger-Newton system with <i>L</i><sup>2</sup>-constraint. Precisely, we prove that there cannot exist multi-peak normalized solutions concentrating at <i>k</i> different critical points of <i>V</i>(<i>x</i>) under certain assumptions on asymptotic behavior of <i>V</i>(<i>x</i>) and its first derivatives near these points. Especially, the critical points of <i>V</i>(<i>x</i>) in this paper must be degenerate.</p><p>The main tools are a local Pohozaev type of identity and the blow-up analysis. Our results also show that the asymptotic behavior of concentrated points to Schrödinger-Newton problem is quite different from the classical Schrödinger equations, which is mainly caused by the nonlocal term.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"39 4","pages":"868 - 877"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-existence of Multi-peak Solutions to the Schrödinger-Newton System with L2-constraint\",\"authors\":\"Qing Guo, Li-xiu Duan\",\"doi\":\"10.1007/s10255-023-1086-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we are concerned with the the Schrödinger-Newton system with <i>L</i><sup>2</sup>-constraint. Precisely, we prove that there cannot exist multi-peak normalized solutions concentrating at <i>k</i> different critical points of <i>V</i>(<i>x</i>) under certain assumptions on asymptotic behavior of <i>V</i>(<i>x</i>) and its first derivatives near these points. Especially, the critical points of <i>V</i>(<i>x</i>) in this paper must be degenerate.</p><p>The main tools are a local Pohozaev type of identity and the blow-up analysis. Our results also show that the asymptotic behavior of concentrated points to Schrödinger-Newton problem is quite different from the classical Schrödinger equations, which is mainly caused by the nonlocal term.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"39 4\",\"pages\":\"868 - 877\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1086-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1086-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Non-existence of Multi-peak Solutions to the Schrödinger-Newton System with L2-constraint
In this paper, we are concerned with the the Schrödinger-Newton system with L2-constraint. Precisely, we prove that there cannot exist multi-peak normalized solutions concentrating at k different critical points of V(x) under certain assumptions on asymptotic behavior of V(x) and its first derivatives near these points. Especially, the critical points of V(x) in this paper must be degenerate.
The main tools are a local Pohozaev type of identity and the blow-up analysis. Our results also show that the asymptotic behavior of concentrated points to Schrödinger-Newton problem is quite different from the classical Schrödinger equations, which is mainly caused by the nonlocal term.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.