{"title":"核废料三维可压缩污染处理的迎风混合有限体积元-分步法及收敛分析","authors":"Chang-feng Li, Yi-rang Yuan, Huai-ling Song","doi":"10.1007/s10255-023-1099-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper the authors discuss a numerical simulation problem of three-dimensional compressible contamination treatment from nuclear waste. The mathematical model, a nonlinear convection-diffusion system of four PDEs, determines four major physical unknowns: the pressure, the concentrations of brine and radionuclide, and the temperature. The pressure is solved by a conservative mixed finite volume element method, and the computational accuracy is improved for Darcy velocity. Other unknowns are computed by a composite scheme of upwind approximation and mixed finite volume element. Numerical dispersion and nonphysical oscillation are eliminated, and the convection-dominated diffusion problems are solved well with high order computational accuracy. The mixed finite volume element is conservative locally, and get the objective functions and their adjoint vector functions simultaneously. The conservation nature is an important character in numerical simulation of underground fluid. Fractional step difference is introduced to solve the concentrations of radionuclide factors, and the computational work is shortened significantly by decomposing a three-dimensional problem into three successive one-dimensional problems. By the theory and technique of a priori estimates of differential equations, we derive an optimal order estimates in <i>L</i><sup>2</sup> norm. Finally, numerical examples show the effectiveness and practicability for some actual problems.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"39 4","pages":"808 - 829"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Upwind Mixed Finite Volume Element-fractional Step Method and Convergence Analysis for Three-dimensional Compressible Contamination Treatment from Nuclear Waste\",\"authors\":\"Chang-feng Li, Yi-rang Yuan, Huai-ling Song\",\"doi\":\"10.1007/s10255-023-1099-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper the authors discuss a numerical simulation problem of three-dimensional compressible contamination treatment from nuclear waste. The mathematical model, a nonlinear convection-diffusion system of four PDEs, determines four major physical unknowns: the pressure, the concentrations of brine and radionuclide, and the temperature. The pressure is solved by a conservative mixed finite volume element method, and the computational accuracy is improved for Darcy velocity. Other unknowns are computed by a composite scheme of upwind approximation and mixed finite volume element. Numerical dispersion and nonphysical oscillation are eliminated, and the convection-dominated diffusion problems are solved well with high order computational accuracy. The mixed finite volume element is conservative locally, and get the objective functions and their adjoint vector functions simultaneously. The conservation nature is an important character in numerical simulation of underground fluid. Fractional step difference is introduced to solve the concentrations of radionuclide factors, and the computational work is shortened significantly by decomposing a three-dimensional problem into three successive one-dimensional problems. By the theory and technique of a priori estimates of differential equations, we derive an optimal order estimates in <i>L</i><sup>2</sup> norm. Finally, numerical examples show the effectiveness and practicability for some actual problems.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"39 4\",\"pages\":\"808 - 829\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1099-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1099-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An Upwind Mixed Finite Volume Element-fractional Step Method and Convergence Analysis for Three-dimensional Compressible Contamination Treatment from Nuclear Waste
In this paper the authors discuss a numerical simulation problem of three-dimensional compressible contamination treatment from nuclear waste. The mathematical model, a nonlinear convection-diffusion system of four PDEs, determines four major physical unknowns: the pressure, the concentrations of brine and radionuclide, and the temperature. The pressure is solved by a conservative mixed finite volume element method, and the computational accuracy is improved for Darcy velocity. Other unknowns are computed by a composite scheme of upwind approximation and mixed finite volume element. Numerical dispersion and nonphysical oscillation are eliminated, and the convection-dominated diffusion problems are solved well with high order computational accuracy. The mixed finite volume element is conservative locally, and get the objective functions and their adjoint vector functions simultaneously. The conservation nature is an important character in numerical simulation of underground fluid. Fractional step difference is introduced to solve the concentrations of radionuclide factors, and the computational work is shortened significantly by decomposing a three-dimensional problem into three successive one-dimensional problems. By the theory and technique of a priori estimates of differential equations, we derive an optimal order estimates in L2 norm. Finally, numerical examples show the effectiveness and practicability for some actual problems.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.