{"title":"关于Kuramoto振子的无穷集的涌现动力学","authors":"Seung-Yeal Ha, Euntaek Lee, Woojoo Shim","doi":"10.1007/s10955-023-03184-6","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an infinite Kuramoto model for a countably infinite set of Kuramoto oscillators and study its emergent dynamics for two classes of network topologies. For a class of symmetric and row (or column)-summable network topology, we show that a homogeneous ensemble exhibits complete synchronization, and the infinite Kuramoto model can cast as a gradient flow, whereas we obtain a weak synchronization estimate, namely practical synchronization for a heterogeneous ensemble. Unlike with the finite Kuramoto model, phase diameter can be constant for some class of network topologies which is a novel feature of the infinite model. We also consider a second class of network topology (so-called a sender network) in which coupling strengths are proportional to a constant that depends only on sender’s index number. For this network topology, we have a better control on emergent dynamics. For a homogeneous ensemble, there are only two possible asymptotic states, complete phase synchrony or bi-cluster configuration in any positive coupling strengths. In contrast, for a heterogeneous ensemble, complete synchronization occurs exponentially fast for a class of initial configuration confined in a quarter arc.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"190 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Emergent Dynamics of the Infinite Set of Kuramoto Oscillators\",\"authors\":\"Seung-Yeal Ha, Euntaek Lee, Woojoo Shim\",\"doi\":\"10.1007/s10955-023-03184-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose an infinite Kuramoto model for a countably infinite set of Kuramoto oscillators and study its emergent dynamics for two classes of network topologies. For a class of symmetric and row (or column)-summable network topology, we show that a homogeneous ensemble exhibits complete synchronization, and the infinite Kuramoto model can cast as a gradient flow, whereas we obtain a weak synchronization estimate, namely practical synchronization for a heterogeneous ensemble. Unlike with the finite Kuramoto model, phase diameter can be constant for some class of network topologies which is a novel feature of the infinite model. We also consider a second class of network topology (so-called a sender network) in which coupling strengths are proportional to a constant that depends only on sender’s index number. For this network topology, we have a better control on emergent dynamics. For a homogeneous ensemble, there are only two possible asymptotic states, complete phase synchrony or bi-cluster configuration in any positive coupling strengths. In contrast, for a heterogeneous ensemble, complete synchronization occurs exponentially fast for a class of initial configuration confined in a quarter arc.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"190 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-023-03184-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-023-03184-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On the Emergent Dynamics of the Infinite Set of Kuramoto Oscillators
We propose an infinite Kuramoto model for a countably infinite set of Kuramoto oscillators and study its emergent dynamics for two classes of network topologies. For a class of symmetric and row (or column)-summable network topology, we show that a homogeneous ensemble exhibits complete synchronization, and the infinite Kuramoto model can cast as a gradient flow, whereas we obtain a weak synchronization estimate, namely practical synchronization for a heterogeneous ensemble. Unlike with the finite Kuramoto model, phase diameter can be constant for some class of network topologies which is a novel feature of the infinite model. We also consider a second class of network topology (so-called a sender network) in which coupling strengths are proportional to a constant that depends only on sender’s index number. For this network topology, we have a better control on emergent dynamics. For a homogeneous ensemble, there are only two possible asymptotic states, complete phase synchrony or bi-cluster configuration in any positive coupling strengths. In contrast, for a heterogeneous ensemble, complete synchronization occurs exponentially fast for a class of initial configuration confined in a quarter arc.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.