关于Kuramoto振子的无穷集的涌现动力学

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Seung-Yeal Ha, Euntaek Lee, Woojoo Shim
{"title":"关于Kuramoto振子的无穷集的涌现动力学","authors":"Seung-Yeal Ha,&nbsp;Euntaek Lee,&nbsp;Woojoo Shim","doi":"10.1007/s10955-023-03184-6","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an infinite Kuramoto model for a countably infinite set of Kuramoto oscillators and study its emergent dynamics for two classes of network topologies. For a class of symmetric and row (or column)-summable network topology, we show that a homogeneous ensemble exhibits complete synchronization, and the infinite Kuramoto model can cast as a gradient flow, whereas we obtain a weak synchronization estimate, namely practical synchronization for a heterogeneous ensemble. Unlike with the finite Kuramoto model, phase diameter can be constant for some class of network topologies which is a novel feature of the infinite model. We also consider a second class of network topology (so-called a sender network) in which coupling strengths are proportional to a constant that depends only on sender’s index number. For this network topology, we have a better control on emergent dynamics. For a homogeneous ensemble, there are only two possible asymptotic states, complete phase synchrony or bi-cluster configuration in any positive coupling strengths. In contrast, for a heterogeneous ensemble, complete synchronization occurs exponentially fast for a class of initial configuration confined in a quarter arc.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"190 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Emergent Dynamics of the Infinite Set of Kuramoto Oscillators\",\"authors\":\"Seung-Yeal Ha,&nbsp;Euntaek Lee,&nbsp;Woojoo Shim\",\"doi\":\"10.1007/s10955-023-03184-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose an infinite Kuramoto model for a countably infinite set of Kuramoto oscillators and study its emergent dynamics for two classes of network topologies. For a class of symmetric and row (or column)-summable network topology, we show that a homogeneous ensemble exhibits complete synchronization, and the infinite Kuramoto model can cast as a gradient flow, whereas we obtain a weak synchronization estimate, namely practical synchronization for a heterogeneous ensemble. Unlike with the finite Kuramoto model, phase diameter can be constant for some class of network topologies which is a novel feature of the infinite model. We also consider a second class of network topology (so-called a sender network) in which coupling strengths are proportional to a constant that depends only on sender’s index number. For this network topology, we have a better control on emergent dynamics. For a homogeneous ensemble, there are only two possible asymptotic states, complete phase synchrony or bi-cluster configuration in any positive coupling strengths. In contrast, for a heterogeneous ensemble, complete synchronization occurs exponentially fast for a class of initial configuration confined in a quarter arc.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"190 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-023-03184-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-023-03184-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个可数无限组Kuramoto振子的无限Kuramoto模型,并研究了它在两类网络拓扑中的涌现动力学。对于一类对称且行(或列)可和的网络拓扑,我们证明了同构系综表现出完全同步,并且无限Kuramoto模型可以投射为梯度流,而我们获得了弱同步估计,即异构系综的实际同步。与有限Kuramoto模型不同,对于某些类型的网络拓扑,相直径可以是常数,这是无限模型的一个新特征。我们还考虑了第二类网络拓扑(所谓的发送方网络),其中耦合强度与仅取决于发送方索引号的常数成比例。对于这种网络拓扑结构,我们可以更好地控制突发动态。对于齐次系综,在任何正耦合强度下,只有两种可能的渐近状态,即完全相位同步或双簇配置。相反,对于异质系综,对于一类限制在四分之一弧中的初始配置,完全同步发生得呈指数级快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Emergent Dynamics of the Infinite Set of Kuramoto Oscillators

We propose an infinite Kuramoto model for a countably infinite set of Kuramoto oscillators and study its emergent dynamics for two classes of network topologies. For a class of symmetric and row (or column)-summable network topology, we show that a homogeneous ensemble exhibits complete synchronization, and the infinite Kuramoto model can cast as a gradient flow, whereas we obtain a weak synchronization estimate, namely practical synchronization for a heterogeneous ensemble. Unlike with the finite Kuramoto model, phase diameter can be constant for some class of network topologies which is a novel feature of the infinite model. We also consider a second class of network topology (so-called a sender network) in which coupling strengths are proportional to a constant that depends only on sender’s index number. For this network topology, we have a better control on emergent dynamics. For a homogeneous ensemble, there are only two possible asymptotic states, complete phase synchrony or bi-cluster configuration in any positive coupling strengths. In contrast, for a heterogeneous ensemble, complete synchronization occurs exponentially fast for a class of initial configuration confined in a quarter arc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信