超级电容器用Mn掺杂Co3O4纳米粒子的表征和电化学性能

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Karthikeyan, R. Mariappan
{"title":"超级电容器用Mn掺杂Co3O4纳米粒子的表征和电化学性能","authors":"A. Karthikeyan,&nbsp;R. Mariappan","doi":"10.1007/s10854-023-11493-5","DOIUrl":null,"url":null,"abstract":"<div><p>The innovative investigation into Mn:Co<sub>3</sub>O<sub>4</sub> samples through a multifaceted approach encompassing diverse characterization methodologies and electrochemical assessments. Employing X-ray diffraction, we unveiled the internal geometry and crystallite disposition, which impeccably matched the spinel-cubic structure of Co<sub>3</sub>O<sub>4</sub>. X-ray photoelectron spectroscopy analysis meticulously corroborated the existence of Co, Mn, and O elements while unveiling distinctive valence states for Co and Mn ions. On further analysis, scanning electron microscopy provides a visual insight into granular, hexagonal-shaped layered structures, with varying pore abundance among the all temperatures. The compositional integrity is confirmed through energy-dispersive X-ray spectroscopy. Electrochemical investigations encompass cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The CV curves exhibit redox peaks denoting pseudo-capacitive behavior, while GCD profiles display symmetric behavior. The specific capacitance at various scan rates highlights the superior performance of the Mn:Co<sub>3</sub>O<sub>4</sub> sample at 700 °C. EIS analyses affirm low interfacial charge resistance and accelerated ion diffusion. Cyclic stability assessment over 1500 cycles underscores the enduring process of Mn:Co<sub>3</sub>O<sub>4</sub> culminating in a favorable specific capacitance of 625 F/g and a remarkable capacity retention of 96% even after 1500 cycles.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"34 31","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and electrochemical performance of Mn-doped Co3O4 nanoparticles for supercapacitor applications\",\"authors\":\"A. Karthikeyan,&nbsp;R. Mariappan\",\"doi\":\"10.1007/s10854-023-11493-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The innovative investigation into Mn:Co<sub>3</sub>O<sub>4</sub> samples through a multifaceted approach encompassing diverse characterization methodologies and electrochemical assessments. Employing X-ray diffraction, we unveiled the internal geometry and crystallite disposition, which impeccably matched the spinel-cubic structure of Co<sub>3</sub>O<sub>4</sub>. X-ray photoelectron spectroscopy analysis meticulously corroborated the existence of Co, Mn, and O elements while unveiling distinctive valence states for Co and Mn ions. On further analysis, scanning electron microscopy provides a visual insight into granular, hexagonal-shaped layered structures, with varying pore abundance among the all temperatures. The compositional integrity is confirmed through energy-dispersive X-ray spectroscopy. Electrochemical investigations encompass cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The CV curves exhibit redox peaks denoting pseudo-capacitive behavior, while GCD profiles display symmetric behavior. The specific capacitance at various scan rates highlights the superior performance of the Mn:Co<sub>3</sub>O<sub>4</sub> sample at 700 °C. EIS analyses affirm low interfacial charge resistance and accelerated ion diffusion. Cyclic stability assessment over 1500 cycles underscores the enduring process of Mn:Co<sub>3</sub>O<sub>4</sub> culminating in a favorable specific capacitance of 625 F/g and a remarkable capacity retention of 96% even after 1500 cycles.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"34 31\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-023-11493-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-023-11493-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

通过包括多种表征方法和电化学评估在内的多方面方法对Mn:Co3O4样品进行创新研究。利用X射线衍射,我们揭示了Co3O4的内部几何结构和晶粒排列,与尖晶石立方结构完美匹配。X射线光电子能谱分析仔细证实了Co、Mn和O元素的存在,同时揭示了Co和Mn离子的独特价态。在进一步的分析中,扫描电子显微镜可以直观地观察到在所有温度下孔隙丰度不同的颗粒状六边形层状结构。通过能量色散X射线光谱确认了组成的完整性。电化学研究包括循环伏安法(CV)、恒电流充放电法(GCD)和电化学阻抗谱法(EIS)。CV曲线显示氧化还原峰,表示伪电容行为,而GCD曲线显示对称行为。不同扫描速率下的比电容突出了Mn:Co3O4样品在700°C下的优异性能。EIS分析证实了低的界面电荷电阻和加速的离子扩散。1500次循环的循环稳定性评估强调了Mn:Co3O4的持久过程,即使在1500次循环后,其比电容也达到了625 F/g,容量保持率也达到了96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and electrochemical performance of Mn-doped Co3O4 nanoparticles for supercapacitor applications

The innovative investigation into Mn:Co3O4 samples through a multifaceted approach encompassing diverse characterization methodologies and electrochemical assessments. Employing X-ray diffraction, we unveiled the internal geometry and crystallite disposition, which impeccably matched the spinel-cubic structure of Co3O4. X-ray photoelectron spectroscopy analysis meticulously corroborated the existence of Co, Mn, and O elements while unveiling distinctive valence states for Co and Mn ions. On further analysis, scanning electron microscopy provides a visual insight into granular, hexagonal-shaped layered structures, with varying pore abundance among the all temperatures. The compositional integrity is confirmed through energy-dispersive X-ray spectroscopy. Electrochemical investigations encompass cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The CV curves exhibit redox peaks denoting pseudo-capacitive behavior, while GCD profiles display symmetric behavior. The specific capacitance at various scan rates highlights the superior performance of the Mn:Co3O4 sample at 700 °C. EIS analyses affirm low interfacial charge resistance and accelerated ion diffusion. Cyclic stability assessment over 1500 cycles underscores the enduring process of Mn:Co3O4 culminating in a favorable specific capacitance of 625 F/g and a remarkable capacity retention of 96% even after 1500 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信