Huan Wang, Zhi-Hao Zhao, Yanfei Zhao, Fengtao Zhang, Junfeng Xiang, Buxing Han and Zhimin Liu
{"title":"无金属条件下烷氧基醇闭环C–O/O–H复分解的阳离子-阴离子受限氢键催化策略†","authors":"Huan Wang, Zhi-Hao Zhao, Yanfei Zhao, Fengtao Zhang, Junfeng Xiang, Buxing Han and Zhimin Liu","doi":"10.1039/D3GC03041E","DOIUrl":null,"url":null,"abstract":"<p >Ring-closing metathesis (RCM) reactions of multiple bonds have seen considerable progress; however, RCM reactions involving single bonds, especially two different single bonds are scarce and extremely challenging. Herein, we present a cation–anion confined hydrogen bonding catalysis strategy for catalyzing the ring-closing C–O/O–H metathesis of alkoxy alcohols to O-heterocycles under metal-free conditions. Assisted with theoretical computation, the effective ionic liquid catalysts were first predicted. [HO-EtMIm][OTf] was found to display the highest activity, consistent with the predicted results. This catalyst could afford a series of O-heterocycles, including tetrahydrofurans, tetrahydropyrans, dioxanes, and some complex ethers that are difficult to access <em>via</em> conventional routes. Moreover, it was recyclable and reusable without activity loss after 5 recycles. Comprehensive investigations endorse that [HO-EtMIm]<small><sup>+</sup></small> cation and [OTf]<small><sup>−</sup></small> anion selectively form hydrogen bonds with the ether O atom and hydroxyl H atom of alkoxy alcohol in opposite directions, respectively, which cooperatively catalyze the reaction in the cation–anion confined ionic microenvironment. The strategy presented here provides a novel and green route to access cyclic ethers.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cation–anion confined hydrogen-bonding catalysis strategy for ring-closing C–O/O–H metathesis of alkoxy alcohols under metal-free conditions†\",\"authors\":\"Huan Wang, Zhi-Hao Zhao, Yanfei Zhao, Fengtao Zhang, Junfeng Xiang, Buxing Han and Zhimin Liu\",\"doi\":\"10.1039/D3GC03041E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ring-closing metathesis (RCM) reactions of multiple bonds have seen considerable progress; however, RCM reactions involving single bonds, especially two different single bonds are scarce and extremely challenging. Herein, we present a cation–anion confined hydrogen bonding catalysis strategy for catalyzing the ring-closing C–O/O–H metathesis of alkoxy alcohols to O-heterocycles under metal-free conditions. Assisted with theoretical computation, the effective ionic liquid catalysts were first predicted. [HO-EtMIm][OTf] was found to display the highest activity, consistent with the predicted results. This catalyst could afford a series of O-heterocycles, including tetrahydrofurans, tetrahydropyrans, dioxanes, and some complex ethers that are difficult to access <em>via</em> conventional routes. Moreover, it was recyclable and reusable without activity loss after 5 recycles. Comprehensive investigations endorse that [HO-EtMIm]<small><sup>+</sup></small> cation and [OTf]<small><sup>−</sup></small> anion selectively form hydrogen bonds with the ether O atom and hydroxyl H atom of alkoxy alcohol in opposite directions, respectively, which cooperatively catalyze the reaction in the cation–anion confined ionic microenvironment. The strategy presented here provides a novel and green route to access cyclic ethers.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc03041e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc03041e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cation–anion confined hydrogen-bonding catalysis strategy for ring-closing C–O/O–H metathesis of alkoxy alcohols under metal-free conditions†
Ring-closing metathesis (RCM) reactions of multiple bonds have seen considerable progress; however, RCM reactions involving single bonds, especially two different single bonds are scarce and extremely challenging. Herein, we present a cation–anion confined hydrogen bonding catalysis strategy for catalyzing the ring-closing C–O/O–H metathesis of alkoxy alcohols to O-heterocycles under metal-free conditions. Assisted with theoretical computation, the effective ionic liquid catalysts were first predicted. [HO-EtMIm][OTf] was found to display the highest activity, consistent with the predicted results. This catalyst could afford a series of O-heterocycles, including tetrahydrofurans, tetrahydropyrans, dioxanes, and some complex ethers that are difficult to access via conventional routes. Moreover, it was recyclable and reusable without activity loss after 5 recycles. Comprehensive investigations endorse that [HO-EtMIm]+ cation and [OTf]− anion selectively form hydrogen bonds with the ether O atom and hydroxyl H atom of alkoxy alcohol in opposite directions, respectively, which cooperatively catalyze the reaction in the cation–anion confined ionic microenvironment. The strategy presented here provides a novel and green route to access cyclic ethers.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.