{"title":"农村固定无线LTE网络的无监督异常检测","authors":"Alexander G. B. Colpitts;Brent R. Petersen","doi":"10.1109/ICJECE.2023.3275975","DOIUrl":null,"url":null,"abstract":"This article presents an anomaly detection (AD) algorithm, robust AD for rural fixed wireless LTE (RAINFOREST), to address the difficulty of fault detection in LTE networks, specifically those that are rural and fixed wireless. We propose a hybrid AD method that uses network key performance indicators (KPIs), historical KPI forecasts, density-based spatial clustering of applications with noise (DBSCAN), and statistical analysis to detect anomalies. RAINFOREST outperformed benchmark AD methods and was able to detect faults in a rural commercial fixed wireless network earlier than existing LTE threshold-based alarms.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"46 4","pages":"256-261"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Anomaly Detection for Rural Fixed Wireless LTE Networks\",\"authors\":\"Alexander G. B. Colpitts;Brent R. Petersen\",\"doi\":\"10.1109/ICJECE.2023.3275975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an anomaly detection (AD) algorithm, robust AD for rural fixed wireless LTE (RAINFOREST), to address the difficulty of fault detection in LTE networks, specifically those that are rural and fixed wireless. We propose a hybrid AD method that uses network key performance indicators (KPIs), historical KPI forecasts, density-based spatial clustering of applications with noise (DBSCAN), and statistical analysis to detect anomalies. RAINFOREST outperformed benchmark AD methods and was able to detect faults in a rural commercial fixed wireless network earlier than existing LTE threshold-based alarms.\",\"PeriodicalId\":100619,\"journal\":{\"name\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"volume\":\"46 4\",\"pages\":\"256-261\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10272979/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10272979/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Unsupervised Anomaly Detection for Rural Fixed Wireless LTE Networks
This article presents an anomaly detection (AD) algorithm, robust AD for rural fixed wireless LTE (RAINFOREST), to address the difficulty of fault detection in LTE networks, specifically those that are rural and fixed wireless. We propose a hybrid AD method that uses network key performance indicators (KPIs), historical KPI forecasts, density-based spatial clustering of applications with noise (DBSCAN), and statistical analysis to detect anomalies. RAINFOREST outperformed benchmark AD methods and was able to detect faults in a rural commercial fixed wireless network earlier than existing LTE threshold-based alarms.