{"title":"具有定制结构单元的高温介电聚合物","authors":"Yao Zhou;Qing Wang","doi":"10.23919/IEN.2023.0031","DOIUrl":null,"url":null,"abstract":"The rapid expansion of renewable energy, electrified transportation and advanced electromagnetic power systems requires electronic devices that can operate stably at harsh temperatures (e.g., 150 to 250 °C). However, as one of the critical components of electronic devices and power systems, film capacitors can currently only operate at temperatures below 105 °C because conventional polymer dielectric materials suffer from high conduction loss at high temperature and high electric field, resulting in severe heat accumulation and thermal runaway of film capacitors.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"2 3","pages":"162-162"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-temperature dielectric polymers with tailored structural units\",\"authors\":\"Yao Zhou;Qing Wang\",\"doi\":\"10.23919/IEN.2023.0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid expansion of renewable energy, electrified transportation and advanced electromagnetic power systems requires electronic devices that can operate stably at harsh temperatures (e.g., 150 to 250 °C). However, as one of the critical components of electronic devices and power systems, film capacitors can currently only operate at temperatures below 105 °C because conventional polymer dielectric materials suffer from high conduction loss at high temperature and high electric field, resulting in severe heat accumulation and thermal runaway of film capacitors.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"2 3\",\"pages\":\"162-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10304828/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10304828/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-temperature dielectric polymers with tailored structural units
The rapid expansion of renewable energy, electrified transportation and advanced electromagnetic power systems requires electronic devices that can operate stably at harsh temperatures (e.g., 150 to 250 °C). However, as one of the critical components of electronic devices and power systems, film capacitors can currently only operate at temperatures below 105 °C because conventional polymer dielectric materials suffer from high conduction loss at high temperature and high electric field, resulting in severe heat accumulation and thermal runaway of film capacitors.