Marco Nicoletto;Alessandro Caria;Fabiana Rampazzo;Carlo De Santi;Matteo Buffolo;Giovanna Mura;Francesca Rossi;Xuanqui Huang;Houqiang Fu;Hong Chen;Yuji Zhao;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini
{"title":"v坑对氮化镓基高周期性多量子阱太阳能电池导通电压的影响","authors":"Marco Nicoletto;Alessandro Caria;Fabiana Rampazzo;Carlo De Santi;Matteo Buffolo;Giovanna Mura;Francesca Rossi;Xuanqui Huang;Houqiang Fu;Hong Chen;Yuji Zhao;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini","doi":"10.1109/JPHOTOV.2023.3311891","DOIUrl":null,"url":null,"abstract":"Based on combined electrical analysis, microscopy investigation, and two-dimensional simulations we investigate the influence of V-pits on the turn-on voltage and current-voltage characteristics of high periodicity InGaN-GaN multiple quantum wells solar cells. Experimental measurements indicate that the sample with the thinnest p-GaN layer presents an early turn-on, which is not present for thicker p-GaN layers. Through technology computer aided design (TCAD) simulations, we show that the early turn-on is due to the insufficient V-pit planarization, as demonstrated by scanning electron microscopy and transmission electron microscopy analysis. V-pits penetrate the junctions, and locally put the quantum well region in closer connection with the p-side contact. The results provide insight on the role of V-pits on the electrical performance of high-periodicity quantum well devices, and demonstrate the existence of a trade-off between the need of a thin p-GaN (to limit short-wavelength absorption) and a thicker p-GaN, to favor V-pit planarization.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"13 6","pages":"891-898"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of V-Pits on the Turn-On Voltage of GaN-Based High Periodicity Multiple Quantum Well Solar Cells\",\"authors\":\"Marco Nicoletto;Alessandro Caria;Fabiana Rampazzo;Carlo De Santi;Matteo Buffolo;Giovanna Mura;Francesca Rossi;Xuanqui Huang;Houqiang Fu;Hong Chen;Yuji Zhao;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini\",\"doi\":\"10.1109/JPHOTOV.2023.3311891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on combined electrical analysis, microscopy investigation, and two-dimensional simulations we investigate the influence of V-pits on the turn-on voltage and current-voltage characteristics of high periodicity InGaN-GaN multiple quantum wells solar cells. Experimental measurements indicate that the sample with the thinnest p-GaN layer presents an early turn-on, which is not present for thicker p-GaN layers. Through technology computer aided design (TCAD) simulations, we show that the early turn-on is due to the insufficient V-pit planarization, as demonstrated by scanning electron microscopy and transmission electron microscopy analysis. V-pits penetrate the junctions, and locally put the quantum well region in closer connection with the p-side contact. The results provide insight on the role of V-pits on the electrical performance of high-periodicity quantum well devices, and demonstrate the existence of a trade-off between the need of a thin p-GaN (to limit short-wavelength absorption) and a thicker p-GaN, to favor V-pit planarization.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"13 6\",\"pages\":\"891-898\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10252136/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10252136/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Influence of V-Pits on the Turn-On Voltage of GaN-Based High Periodicity Multiple Quantum Well Solar Cells
Based on combined electrical analysis, microscopy investigation, and two-dimensional simulations we investigate the influence of V-pits on the turn-on voltage and current-voltage characteristics of high periodicity InGaN-GaN multiple quantum wells solar cells. Experimental measurements indicate that the sample with the thinnest p-GaN layer presents an early turn-on, which is not present for thicker p-GaN layers. Through technology computer aided design (TCAD) simulations, we show that the early turn-on is due to the insufficient V-pit planarization, as demonstrated by scanning electron microscopy and transmission electron microscopy analysis. V-pits penetrate the junctions, and locally put the quantum well region in closer connection with the p-side contact. The results provide insight on the role of V-pits on the electrical performance of high-periodicity quantum well devices, and demonstrate the existence of a trade-off between the need of a thin p-GaN (to limit short-wavelength absorption) and a thicker p-GaN, to favor V-pit planarization.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.