论Cayley Grassmannian的派生范畴

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lyalya Guseva
{"title":"论Cayley Grassmannian的派生范畴","authors":"Lyalya Guseva","doi":"10.1016/j.matpur.2023.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a full exceptional collection consisting of vector bundles in the derived category of coherent sheaves on the so-called Cayley Grassmannian, the subvariety of the Grassmannian <span><math><mi>Gr</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span> parameterizing 3-subspaces that are annihilated by a general 4-form. The main step in the proof of fullness is a construction of two self-dual vector bundles which is obtained from two operations with quadric bundles that might be interesting in themselves.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the derived category of the Cayley Grassmannian\",\"authors\":\"Lyalya Guseva\",\"doi\":\"10.1016/j.matpur.2023.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a full exceptional collection consisting of vector bundles in the derived category of coherent sheaves on the so-called Cayley Grassmannian, the subvariety of the Grassmannian <span><math><mi>Gr</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span> parameterizing 3-subspaces that are annihilated by a general 4-form. The main step in the proof of fullness is a construction of two self-dual vector bundles which is obtained from two operations with quadric bundles that might be interesting in themselves.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们在所谓的Cayley-Grassmannian上构造了一个由相干簇的导出范畴中的向量丛组成的完全例外集合,该簇是Grassmanian Gr(3,7)参数化被一般4-形式湮灭的3-子空间的子变种。充分性证明的主要步骤是构造两个自对偶向量丛,这两个自二重向量丛是从二次丛的两个运算中获得的,二次丛本身可能很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the derived category of the Cayley Grassmannian

We construct a full exceptional collection consisting of vector bundles in the derived category of coherent sheaves on the so-called Cayley Grassmannian, the subvariety of the Grassmannian Gr(3,7) parameterizing 3-subspaces that are annihilated by a general 4-form. The main step in the proof of fullness is a construction of two self-dual vector bundles which is obtained from two operations with quadric bundles that might be interesting in themselves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信