Jiang Yi , Dixue Luo , Qingyu He , Zhen Wen , Yujuan Lu
{"title":"α-乳清蛋白与阿拉伯胶的复合凝聚:环境条件、质量比和生物聚合物浓度的影响","authors":"Jiang Yi , Dixue Luo , Qingyu He , Zhen Wen , Yujuan Lu","doi":"10.1016/j.foostr.2022.100296","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The coacervate formation and interaction between α-lactalbumin (ALA) and gum arabic (GA) was investigated with turbidimetric analysis, fluorescence spectroscopy, atom force microscopy (AFM), and isothermal titration </span>calorimetry (ITC). Critical pH values (pH</span><sub>c</sub>, pH<sub>φ1</sub>, pH<sub>opt</sub> and pH<sub>φ2</sub><span><span>) of phase transitions for ALA-GA complexes (1:1, 0.1%, w/v) without NaCl, representing the formation of soluble and insoluble complexes, were 4.95, 3.85, 3.70, and 2.30, respectively. pH and NaCl concentrations are dominant in influencing the formation of ALA-GA complexes. AFM graphs evidently indicated the formation, association, and dissociation of ALA-GA complex. ITC results confirmed that the formation of soluble ALA/GA complex was a spontaneous exothermic process, and the electrostatic interaction between ALA and GA was stronger at pH 3.0 than that at pH 4.9 and 5.6. The obtained information of this study provides insights into the interaction between ALA and GA and expands the application of ALA-based formulations in </span>food systems with desirable functionality.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"34 ","pages":"Article 100296"},"PeriodicalIF":5.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex coacervation of α-lactalbumin with gum arabic: Effect of environmental condition, mass ratio, and biopolymer concentration\",\"authors\":\"Jiang Yi , Dixue Luo , Qingyu He , Zhen Wen , Yujuan Lu\",\"doi\":\"10.1016/j.foostr.2022.100296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The coacervate formation and interaction between α-lactalbumin (ALA) and gum arabic (GA) was investigated with turbidimetric analysis, fluorescence spectroscopy, atom force microscopy (AFM), and isothermal titration </span>calorimetry (ITC). Critical pH values (pH</span><sub>c</sub>, pH<sub>φ1</sub>, pH<sub>opt</sub> and pH<sub>φ2</sub><span><span>) of phase transitions for ALA-GA complexes (1:1, 0.1%, w/v) without NaCl, representing the formation of soluble and insoluble complexes, were 4.95, 3.85, 3.70, and 2.30, respectively. pH and NaCl concentrations are dominant in influencing the formation of ALA-GA complexes. AFM graphs evidently indicated the formation, association, and dissociation of ALA-GA complex. ITC results confirmed that the formation of soluble ALA/GA complex was a spontaneous exothermic process, and the electrostatic interaction between ALA and GA was stronger at pH 3.0 than that at pH 4.9 and 5.6. The obtained information of this study provides insights into the interaction between ALA and GA and expands the application of ALA-based formulations in </span>food systems with desirable functionality.</span></p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"34 \",\"pages\":\"Article 100296\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329122000454\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329122000454","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Complex coacervation of α-lactalbumin with gum arabic: Effect of environmental condition, mass ratio, and biopolymer concentration
The coacervate formation and interaction between α-lactalbumin (ALA) and gum arabic (GA) was investigated with turbidimetric analysis, fluorescence spectroscopy, atom force microscopy (AFM), and isothermal titration calorimetry (ITC). Critical pH values (pHc, pHφ1, pHopt and pHφ2) of phase transitions for ALA-GA complexes (1:1, 0.1%, w/v) without NaCl, representing the formation of soluble and insoluble complexes, were 4.95, 3.85, 3.70, and 2.30, respectively. pH and NaCl concentrations are dominant in influencing the formation of ALA-GA complexes. AFM graphs evidently indicated the formation, association, and dissociation of ALA-GA complex. ITC results confirmed that the formation of soluble ALA/GA complex was a spontaneous exothermic process, and the electrostatic interaction between ALA and GA was stronger at pH 3.0 than that at pH 4.9 and 5.6. The obtained information of this study provides insights into the interaction between ALA and GA and expands the application of ALA-based formulations in food systems with desirable functionality.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.