Yuwei Zhang, Ziping Li, Chunyu Zhang, Chao Xie, Changqing Li, Qikun Sun, Zhongping Li, Hong Xia and Xiaoming Liu
{"title":"多功能多孔有机聚合物作为气体吸收,金属离子传感和细胞成像的理想平台","authors":"Yuwei Zhang, Ziping Li, Chunyu Zhang, Chao Xie, Changqing Li, Qikun Sun, Zhongping Li, Hong Xia and Xiaoming Liu","doi":"10.1039/D3PY00495C","DOIUrl":null,"url":null,"abstract":"<p >Porous organic polymers (POPs) possess versatile advantages, such as light weight, excellent stability, and high porosity. Hence, POPs could be ideal functional platforms. Herein, two multifunctional M-POPs were prepared <em>via</em> the Schiff-base reaction. They possessed good microporosity, remarkable stability, high-density N/O atoms, and excellent luminescence. Interestingly, the M-POPs achieved a good carbon dioxide-capture value of 17.1 wt% at 273 K and 1 bar, and provided excellent H<small><sub>2</sub></small> capture of 1.0 wt% at 77 K and 1 bar. The M-POPs had many hydroxyl groups and nitrogen on the walls, which aided the formation of metal-coordination sites. The M-POPs had an excellent capacity for the detection of metal ions that was accurate, selective, and sensitive. Furthermore, phospholipid-coated M-POPs could be used to detect metal ions in living cells. These results provide a new design for multifunctional POPs.</p>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":" 36","pages":" 4199-4204"},"PeriodicalIF":4.1000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional porous organic polymers as ideal platforms for gas uptake, metal-ions sensing, and cell imaging†\",\"authors\":\"Yuwei Zhang, Ziping Li, Chunyu Zhang, Chao Xie, Changqing Li, Qikun Sun, Zhongping Li, Hong Xia and Xiaoming Liu\",\"doi\":\"10.1039/D3PY00495C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Porous organic polymers (POPs) possess versatile advantages, such as light weight, excellent stability, and high porosity. Hence, POPs could be ideal functional platforms. Herein, two multifunctional M-POPs were prepared <em>via</em> the Schiff-base reaction. They possessed good microporosity, remarkable stability, high-density N/O atoms, and excellent luminescence. Interestingly, the M-POPs achieved a good carbon dioxide-capture value of 17.1 wt% at 273 K and 1 bar, and provided excellent H<small><sub>2</sub></small> capture of 1.0 wt% at 77 K and 1 bar. The M-POPs had many hydroxyl groups and nitrogen on the walls, which aided the formation of metal-coordination sites. The M-POPs had an excellent capacity for the detection of metal ions that was accurate, selective, and sensitive. Furthermore, phospholipid-coated M-POPs could be used to detect metal ions in living cells. These results provide a new design for multifunctional POPs.</p>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\" 36\",\"pages\":\" 4199-4204\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/py/d3py00495c\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/py/d3py00495c","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Multifunctional porous organic polymers as ideal platforms for gas uptake, metal-ions sensing, and cell imaging†
Porous organic polymers (POPs) possess versatile advantages, such as light weight, excellent stability, and high porosity. Hence, POPs could be ideal functional platforms. Herein, two multifunctional M-POPs were prepared via the Schiff-base reaction. They possessed good microporosity, remarkable stability, high-density N/O atoms, and excellent luminescence. Interestingly, the M-POPs achieved a good carbon dioxide-capture value of 17.1 wt% at 273 K and 1 bar, and provided excellent H2 capture of 1.0 wt% at 77 K and 1 bar. The M-POPs had many hydroxyl groups and nitrogen on the walls, which aided the formation of metal-coordination sites. The M-POPs had an excellent capacity for the detection of metal ions that was accurate, selective, and sensitive. Furthermore, phospholipid-coated M-POPs could be used to detect metal ions in living cells. These results provide a new design for multifunctional POPs.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.