Li-Ye Yuan , Chun-Xiang Lu , Xiao-Xuan Lu , Shu-Xia Yuan , Meng Zhang , Li-Juan Cao , Yu Yang
{"title":"锂离子电池纳米硅/碳复合阳极的合成及其电化学性能","authors":"Li-Ye Yuan , Chun-Xiang Lu , Xiao-Xuan Lu , Shu-Xia Yuan , Meng Zhang , Li-Juan Cao , Yu Yang","doi":"10.1016/S1872-5805(23)60707-3","DOIUrl":null,"url":null,"abstract":"<div><p>Phenolic resin was coated on the surface of nano-Si by a microencapsulation technique, and then carbonized under Ar protection to prepare a nano-Si/C composite. The composites were first prepared using 4 different mass ratios (1:2, 1:4, 1:6, 1:8) of phenolic resin to nano-Si. The obtained average thicknesses of amorphous carbon coating were 7, 4.5, 3.7, 2.8 nm, respectively. By comparing the cycling and rate capability, the best electrochemical performance was obtained when this ratio was 1:4, with a 4.5 nm amorphous carbon coating. The electrochemical properties of this material were then comprehensively evaluated, showing excellent electrochemical performance as an anode material for Li-ion batteries. At a current density of 100 mAg<sup>−1</sup>, the material had a first specific discharge capacity of 2 382 mAhg<sup>−1</sup>, a first charge specific capacity of 1667 mAhg<sup>−1</sup>, and an initial coulombic efficiency of 70%. A discharge specific capacity of 835.6 mAhg<sup>−1</sup> was retained after 200 cycles with a high coulombic efficiency of 99.2%. In addition, the nano-Si/C composite demonstrated superior rate performance. Under current densities of 100, 200, 500, 1 000 and 2 000 mAg<sup>−1</sup>, the average specific discharge capacities were 1 716.4, 1 231.6, 911.7, 676.1 and 339.8 mAh g<sup>−1</sup>, respectively. When the current density returned to 100 mA g<sup>−1</sup>, the specific capacity returned to 1 326.4 mAh g<sup>−1</sup>.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 5","pages":"Pages 964-975"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and electrochemical properties of nano-Si/C composite anodes for lithium-ion batteries\",\"authors\":\"Li-Ye Yuan , Chun-Xiang Lu , Xiao-Xuan Lu , Shu-Xia Yuan , Meng Zhang , Li-Juan Cao , Yu Yang\",\"doi\":\"10.1016/S1872-5805(23)60707-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phenolic resin was coated on the surface of nano-Si by a microencapsulation technique, and then carbonized under Ar protection to prepare a nano-Si/C composite. The composites were first prepared using 4 different mass ratios (1:2, 1:4, 1:6, 1:8) of phenolic resin to nano-Si. The obtained average thicknesses of amorphous carbon coating were 7, 4.5, 3.7, 2.8 nm, respectively. By comparing the cycling and rate capability, the best electrochemical performance was obtained when this ratio was 1:4, with a 4.5 nm amorphous carbon coating. The electrochemical properties of this material were then comprehensively evaluated, showing excellent electrochemical performance as an anode material for Li-ion batteries. At a current density of 100 mAg<sup>−1</sup>, the material had a first specific discharge capacity of 2 382 mAhg<sup>−1</sup>, a first charge specific capacity of 1667 mAhg<sup>−1</sup>, and an initial coulombic efficiency of 70%. A discharge specific capacity of 835.6 mAhg<sup>−1</sup> was retained after 200 cycles with a high coulombic efficiency of 99.2%. In addition, the nano-Si/C composite demonstrated superior rate performance. Under current densities of 100, 200, 500, 1 000 and 2 000 mAg<sup>−1</sup>, the average specific discharge capacities were 1 716.4, 1 231.6, 911.7, 676.1 and 339.8 mAh g<sup>−1</sup>, respectively. When the current density returned to 100 mA g<sup>−1</sup>, the specific capacity returned to 1 326.4 mAh g<sup>−1</sup>.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"38 5\",\"pages\":\"Pages 964-975\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580523607073\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607073","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
采用微胶囊化技术将酚醛树脂包覆在纳米硅表面,然后在Ar保护下碳化,制备出纳米Si/C复合材料。首先使用酚醛树脂与纳米硅的4种不同质量比(1:2、1:4、1:6、1:8)制备了复合材料。所获得的非晶碳涂层的平均厚度分别为7、4.5、3.7、2.8nm。通过比较循环能力和倍率能力,当该比例为1:4时,获得了最佳的电化学性能,具有4.5nm的无定形碳涂层。然后对该材料的电化学性能进行了综合评价,显示出作为锂离子电池阳极材料的优异电化学性能。在100 mAg−1的电流密度下,该材料的第一比放电容量为2 382 mAhg−1,第一充电比容量为1667 mAhg–1,初始库仑效率为70%。200次循环后,放电比容量保持在835.6 mAhg−1,库仑效率高达99.2%。此外,纳米Si/C复合材料表现出优异的倍率性能。在100、200、500、1000和2000 mAg−1的电流密度下,平均比放电容量分别为1 716.4、1 231.6、911.7、676.1和339.8 mAh g−1。当电流密度恢复到100 mA g−1时,比容量恢复到1 326.4 mAh g−1。
Synthesis and electrochemical properties of nano-Si/C composite anodes for lithium-ion batteries
Phenolic resin was coated on the surface of nano-Si by a microencapsulation technique, and then carbonized under Ar protection to prepare a nano-Si/C composite. The composites were first prepared using 4 different mass ratios (1:2, 1:4, 1:6, 1:8) of phenolic resin to nano-Si. The obtained average thicknesses of amorphous carbon coating were 7, 4.5, 3.7, 2.8 nm, respectively. By comparing the cycling and rate capability, the best electrochemical performance was obtained when this ratio was 1:4, with a 4.5 nm amorphous carbon coating. The electrochemical properties of this material were then comprehensively evaluated, showing excellent electrochemical performance as an anode material for Li-ion batteries. At a current density of 100 mAg−1, the material had a first specific discharge capacity of 2 382 mAhg−1, a first charge specific capacity of 1667 mAhg−1, and an initial coulombic efficiency of 70%. A discharge specific capacity of 835.6 mAhg−1 was retained after 200 cycles with a high coulombic efficiency of 99.2%. In addition, the nano-Si/C composite demonstrated superior rate performance. Under current densities of 100, 200, 500, 1 000 and 2 000 mAg−1, the average specific discharge capacities were 1 716.4, 1 231.6, 911.7, 676.1 and 339.8 mAh g−1, respectively. When the current density returned to 100 mA g−1, the specific capacity returned to 1 326.4 mAh g−1.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.