Ramona Gaza , A. Steve Johnson , Bryan Hayes , Thomas Campbell-Ricketts , Jani Rakkola , Mena Abdelmelek , Cary Zeitlin , Stuart George , Nicholas Stoffle , Andrew Castro , Clif Amberboy , Edward Semones
{"title":"时间分辨个人剂量测定在太空中的重要性:国际空间站乘员主动剂量计","authors":"Ramona Gaza , A. Steve Johnson , Bryan Hayes , Thomas Campbell-Ricketts , Jani Rakkola , Mena Abdelmelek , Cary Zeitlin , Stuart George , Nicholas Stoffle , Andrew Castro , Clif Amberboy , Edward Semones","doi":"10.1016/j.lssr.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring space radiation is of vital importance for risk reduction strategies in human space exploration. Radiation protection programs on Earth and in space rely on personal and area radiation monitoring instruments. Crew worn radiation detectors are crucial for successful crew radiation protection programs since they measure what each crewmember experiences in different shielding configurations within the space habitable volume. The Space Radiation Analysis Group at NASA Johnson Space Center investigated several compact, low power, real-time instruments for personal dosimetry. Following these feasibility studies, the Crew Active Dosimeter (CAD) has been chosen as a replacement for the legacy crew passive radiation detectors. The CAD device, based on direct ion storage technology, was developed by Mirion Dosimetry Services to meet the specified NASA design requirements for the International Space Station (ISS) and Artemis programs. After a successful Technology demonstration on ISS, the CAD has been implemented for ISS Crew operations since 2020. The current paper provides an overview of the CAD development, ISS results and comparison with the ISS Radiation Assessment Detector (RAD) and the Radiation Environment Monitor 2 (REM2) instruments.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"39 ","pages":"Pages 95-105"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The importance of time-resolved personal Dosimetry in space: The ISS Crew Active Dosimeter\",\"authors\":\"Ramona Gaza , A. Steve Johnson , Bryan Hayes , Thomas Campbell-Ricketts , Jani Rakkola , Mena Abdelmelek , Cary Zeitlin , Stuart George , Nicholas Stoffle , Andrew Castro , Clif Amberboy , Edward Semones\",\"doi\":\"10.1016/j.lssr.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monitoring space radiation is of vital importance for risk reduction strategies in human space exploration. Radiation protection programs on Earth and in space rely on personal and area radiation monitoring instruments. Crew worn radiation detectors are crucial for successful crew radiation protection programs since they measure what each crewmember experiences in different shielding configurations within the space habitable volume. The Space Radiation Analysis Group at NASA Johnson Space Center investigated several compact, low power, real-time instruments for personal dosimetry. Following these feasibility studies, the Crew Active Dosimeter (CAD) has been chosen as a replacement for the legacy crew passive radiation detectors. The CAD device, based on direct ion storage technology, was developed by Mirion Dosimetry Services to meet the specified NASA design requirements for the International Space Station (ISS) and Artemis programs. After a successful Technology demonstration on ISS, the CAD has been implemented for ISS Crew operations since 2020. The current paper provides an overview of the CAD development, ISS results and comparison with the ISS Radiation Assessment Detector (RAD) and the Radiation Environment Monitor 2 (REM2) instruments.</p></div>\",\"PeriodicalId\":18029,\"journal\":{\"name\":\"Life Sciences in Space Research\",\"volume\":\"39 \",\"pages\":\"Pages 95-105\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Sciences in Space Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214552423000627\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552423000627","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The importance of time-resolved personal Dosimetry in space: The ISS Crew Active Dosimeter
Monitoring space radiation is of vital importance for risk reduction strategies in human space exploration. Radiation protection programs on Earth and in space rely on personal and area radiation monitoring instruments. Crew worn radiation detectors are crucial for successful crew radiation protection programs since they measure what each crewmember experiences in different shielding configurations within the space habitable volume. The Space Radiation Analysis Group at NASA Johnson Space Center investigated several compact, low power, real-time instruments for personal dosimetry. Following these feasibility studies, the Crew Active Dosimeter (CAD) has been chosen as a replacement for the legacy crew passive radiation detectors. The CAD device, based on direct ion storage technology, was developed by Mirion Dosimetry Services to meet the specified NASA design requirements for the International Space Station (ISS) and Artemis programs. After a successful Technology demonstration on ISS, the CAD has been implemented for ISS Crew operations since 2020. The current paper provides an overview of the CAD development, ISS results and comparison with the ISS Radiation Assessment Detector (RAD) and the Radiation Environment Monitor 2 (REM2) instruments.
期刊介绍:
Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research.
Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.