{"title":"分子模拟告知生物质溶解在离子液体中追求良性溶剂系统设计†","authors":"Preston Griffin and Jakub Kostal","doi":"10.1039/D3GC01981K","DOIUrl":null,"url":null,"abstract":"<p >When we look for a poster child of green chemistry ‘in action’, we do not need to look further than the deconstruction of lignocellulose using ionic liquids (IL) to valorize this renewable resource into useful chemicals. However, there is a caveat: successful development of new chemistries cannot be achieved without systems-based design tools that consider performance in conjunction with potential toxicity. Here, we show that a combination of computational approaches, based on quantum mechanics (QM) calculations and Monte Carlo (MC) simulations, can be leveraged to construct a useful framework for screening existing and designing new ILs capable of safe and selective dissolution of lignocellulosic biomass. With the overwhelming number of IL cation–anion combinations, <em>in silico</em> methods are uniquely suited for this challenge so long as they retain mechanistic relevance to the underlying processes. Our computational approach ensures this criterion by relying on well-correlated linear models of interaction energetics between IL and key biomass building blocks. Functional considerations are supplemented with frontier molecular orbital calculations to determine safety toward aquatic species based on previously established and broadly validated guidelines.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 18","pages":" 7283-7291"},"PeriodicalIF":9.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular simulations inform biomass dissolution in ionic liquids in pursuit of benign solvent-system design†\",\"authors\":\"Preston Griffin and Jakub Kostal\",\"doi\":\"10.1039/D3GC01981K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >When we look for a poster child of green chemistry ‘in action’, we do not need to look further than the deconstruction of lignocellulose using ionic liquids (IL) to valorize this renewable resource into useful chemicals. However, there is a caveat: successful development of new chemistries cannot be achieved without systems-based design tools that consider performance in conjunction with potential toxicity. Here, we show that a combination of computational approaches, based on quantum mechanics (QM) calculations and Monte Carlo (MC) simulations, can be leveraged to construct a useful framework for screening existing and designing new ILs capable of safe and selective dissolution of lignocellulosic biomass. With the overwhelming number of IL cation–anion combinations, <em>in silico</em> methods are uniquely suited for this challenge so long as they retain mechanistic relevance to the underlying processes. Our computational approach ensures this criterion by relying on well-correlated linear models of interaction energetics between IL and key biomass building blocks. Functional considerations are supplemented with frontier molecular orbital calculations to determine safety toward aquatic species based on previously established and broadly validated guidelines.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 18\",\"pages\":\" 7283-7291\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc01981k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc01981k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular simulations inform biomass dissolution in ionic liquids in pursuit of benign solvent-system design†
When we look for a poster child of green chemistry ‘in action’, we do not need to look further than the deconstruction of lignocellulose using ionic liquids (IL) to valorize this renewable resource into useful chemicals. However, there is a caveat: successful development of new chemistries cannot be achieved without systems-based design tools that consider performance in conjunction with potential toxicity. Here, we show that a combination of computational approaches, based on quantum mechanics (QM) calculations and Monte Carlo (MC) simulations, can be leveraged to construct a useful framework for screening existing and designing new ILs capable of safe and selective dissolution of lignocellulosic biomass. With the overwhelming number of IL cation–anion combinations, in silico methods are uniquely suited for this challenge so long as they retain mechanistic relevance to the underlying processes. Our computational approach ensures this criterion by relying on well-correlated linear models of interaction energetics between IL and key biomass building blocks. Functional considerations are supplemented with frontier molecular orbital calculations to determine safety toward aquatic species based on previously established and broadly validated guidelines.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.