Yaser Sheikhi, Seyed Mohammad Ashrafi, Mohammad Reza Nikoo, Ali Haghighi
{"title":"加强城市地区日降雨量预测:混合人工智能模型与优化算法的比较研究","authors":"Yaser Sheikhi, Seyed Mohammad Ashrafi, Mohammad Reza Nikoo, Ali Haghighi","doi":"10.1007/s13201-023-02036-8","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting precipitation is a crucial input to hydrological models and hydrological event management. Accurate forecasts minimize the impact of extreme events on communities and infrastructure by providing timely and reliable information. In this study, six artificial intelligent hybrid models are developed to predict daily rainfall in urban areas by combining the firefly optimization algorithm (FA), invasive weed optimization algorithm (IWO), genetic particle swarm optimization algorithm (GAPSO), neural network (ANN), group method of data handling (GMDH), and wavelet transformation. Optimization algorithms increase forecasting accuracy by controlling all stages. A variety of criteria are used for validating the models, including correlation coefficient (<i>R</i>), root-mean-square error (RMSE), mean absolute error (MAE), critical success index (CSI), probability of detection (POD), and false alarm ratio (FAR). The proposed models are also evaluated in an urban area in Ahvaz, Iran. The GAPSO-Wavelet-ANN model is superior to other models for predicting daily rainfall, with an RMSE of 1.42 mm and an <i>R</i> of 0.9715.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"13 12","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-023-02036-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing daily rainfall prediction in urban areas: a comparative study of hybrid artificial intelligence models with optimization algorithms\",\"authors\":\"Yaser Sheikhi, Seyed Mohammad Ashrafi, Mohammad Reza Nikoo, Ali Haghighi\",\"doi\":\"10.1007/s13201-023-02036-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forecasting precipitation is a crucial input to hydrological models and hydrological event management. Accurate forecasts minimize the impact of extreme events on communities and infrastructure by providing timely and reliable information. In this study, six artificial intelligent hybrid models are developed to predict daily rainfall in urban areas by combining the firefly optimization algorithm (FA), invasive weed optimization algorithm (IWO), genetic particle swarm optimization algorithm (GAPSO), neural network (ANN), group method of data handling (GMDH), and wavelet transformation. Optimization algorithms increase forecasting accuracy by controlling all stages. A variety of criteria are used for validating the models, including correlation coefficient (<i>R</i>), root-mean-square error (RMSE), mean absolute error (MAE), critical success index (CSI), probability of detection (POD), and false alarm ratio (FAR). The proposed models are also evaluated in an urban area in Ahvaz, Iran. The GAPSO-Wavelet-ANN model is superior to other models for predicting daily rainfall, with an RMSE of 1.42 mm and an <i>R</i> of 0.9715.</p></div>\",\"PeriodicalId\":8374,\"journal\":{\"name\":\"Applied Water Science\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13201-023-02036-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Water Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13201-023-02036-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-023-02036-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Enhancing daily rainfall prediction in urban areas: a comparative study of hybrid artificial intelligence models with optimization algorithms
Forecasting precipitation is a crucial input to hydrological models and hydrological event management. Accurate forecasts minimize the impact of extreme events on communities and infrastructure by providing timely and reliable information. In this study, six artificial intelligent hybrid models are developed to predict daily rainfall in urban areas by combining the firefly optimization algorithm (FA), invasive weed optimization algorithm (IWO), genetic particle swarm optimization algorithm (GAPSO), neural network (ANN), group method of data handling (GMDH), and wavelet transformation. Optimization algorithms increase forecasting accuracy by controlling all stages. A variety of criteria are used for validating the models, including correlation coefficient (R), root-mean-square error (RMSE), mean absolute error (MAE), critical success index (CSI), probability of detection (POD), and false alarm ratio (FAR). The proposed models are also evaluated in an urban area in Ahvaz, Iran. The GAPSO-Wavelet-ANN model is superior to other models for predicting daily rainfall, with an RMSE of 1.42 mm and an R of 0.9715.