康复和评估过程中用于物理人机交互的2-DOF球形五杆外骨骼的阻抗控制。

E Wolbrecht, V Ketkar, J C Perry
{"title":"康复和评估过程中用于物理人机交互的2-DOF球形五杆外骨骼的阻抗控制。","authors":"E Wolbrecht, V Ketkar, J C Perry","doi":"10.1109/ICORR58425.2023.10304762","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel impedance controller for THINGER (THumb INdividuating Grasp Exercise Robot), a 2-degree-of-freedom (DOF) spherical 5-bar exoskeleton designed to augment FINGER (Finger INdividuating Grasp Exercise Robot). Many rehabilitation and assessment tasks, for which THINGER is designed, are improved by rendering near-zero impedance during physical human-robot interaction (pHRI). To achieve this goal, the presented impedance controller includes several novel features. First, a reference trajectory is omitted, allowing free movements. Second, force-feedback gains are reduced near actuator limits and a saturation function limits the maximum commanded force; both allow more responsive (higher) force-feedback gains within the workspace and mitigate transient oscillations caused by external disturbances. Finally, manipulability-based directional force-feedback gains help improve rendered impedance isotropy. Validation experiments included free exploration of the workspace, following a prescribed circular thumb motion, and intentional exposure to external disturbances. The experimental results show that the presented impedance controller significantly reduces impedance to subject-initiated motion and accurately renders the desired isotropic low-impedance environment.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impedance Control of a 2-DOF Spherical 5-Bar Exoskeleton for Physical Human-Robot Interaction During Rehabilitation and Assessment.\",\"authors\":\"E Wolbrecht, V Ketkar, J C Perry\",\"doi\":\"10.1109/ICORR58425.2023.10304762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a novel impedance controller for THINGER (THumb INdividuating Grasp Exercise Robot), a 2-degree-of-freedom (DOF) spherical 5-bar exoskeleton designed to augment FINGER (Finger INdividuating Grasp Exercise Robot). Many rehabilitation and assessment tasks, for which THINGER is designed, are improved by rendering near-zero impedance during physical human-robot interaction (pHRI). To achieve this goal, the presented impedance controller includes several novel features. First, a reference trajectory is omitted, allowing free movements. Second, force-feedback gains are reduced near actuator limits and a saturation function limits the maximum commanded force; both allow more responsive (higher) force-feedback gains within the workspace and mitigate transient oscillations caused by external disturbances. Finally, manipulability-based directional force-feedback gains help improve rendered impedance isotropy. Validation experiments included free exploration of the workspace, following a prescribed circular thumb motion, and intentional exposure to external disturbances. The experimental results show that the presented impedance controller significantly reduces impedance to subject-initiated motion and accurately renders the desired isotropic low-impedance environment.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2023 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR58425.2023.10304762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新型的THINGER(THumb分隔抓握运动机器人)阻抗控制器,THINGER是一种2自由度(DOF)球形5杆外骨骼,旨在增强手指分隔抓握锻炼机器人。THINGER设计的许多康复和评估任务都是通过在物理人机交互(pHRI)过程中呈现接近零的阻抗来改进的。为了实现这一目标,所提出的阻抗控制器包括几个新颖的特征。首先,参考轨迹被省略,从而允许自由移动。第二,力反馈增益在致动器极限附近减小,饱和函数限制最大指令力;两者都允许在工作空间内获得更响应(更高)的力反馈增益,并减轻由外部干扰引起的瞬态振荡。最后,基于可操作性的定向力反馈增益有助于改善渲染阻抗各向同性。验证实验包括自由探索工作空间,遵循规定的拇指圆周运动,以及有意暴露于外部干扰。实验结果表明,所提出的阻抗控制器显著降低了受试者发起运动的阻抗,并准确地呈现了所需的各向同性低阻抗环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impedance Control of a 2-DOF Spherical 5-Bar Exoskeleton for Physical Human-Robot Interaction During Rehabilitation and Assessment.

This paper presents a novel impedance controller for THINGER (THumb INdividuating Grasp Exercise Robot), a 2-degree-of-freedom (DOF) spherical 5-bar exoskeleton designed to augment FINGER (Finger INdividuating Grasp Exercise Robot). Many rehabilitation and assessment tasks, for which THINGER is designed, are improved by rendering near-zero impedance during physical human-robot interaction (pHRI). To achieve this goal, the presented impedance controller includes several novel features. First, a reference trajectory is omitted, allowing free movements. Second, force-feedback gains are reduced near actuator limits and a saturation function limits the maximum commanded force; both allow more responsive (higher) force-feedback gains within the workspace and mitigate transient oscillations caused by external disturbances. Finally, manipulability-based directional force-feedback gains help improve rendered impedance isotropy. Validation experiments included free exploration of the workspace, following a prescribed circular thumb motion, and intentional exposure to external disturbances. The experimental results show that the presented impedance controller significantly reduces impedance to subject-initiated motion and accurately renders the desired isotropic low-impedance environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信