在肌电控制图中探索用于性能增强和学习的肌肉协同作用。

K C Tse, P Capsi-Morales, T Spiegeler Castaneda, C Piazza
{"title":"在肌电控制图中探索用于性能增强和学习的肌肉协同作用。","authors":"K C Tse, P Capsi-Morales, T Spiegeler Castaneda, C Piazza","doi":"10.1109/ICORR58425.2023.10304809","DOIUrl":null,"url":null,"abstract":"<p><p>This work proposes two myoelectric control maps based on a DoF-wise synergy algorithm, inspired by human motor control studies. One map, called intuitive, matches control outputs with body movement directions. The second one, named non-intuitive, takes advantage of different synergies contribution to each DoF, without specific correlation to body movement directions. The effectiveness and learning process for the two maps is evaluated through performance metrics in ten able-bodied individuals. The analysis was conducted using a 2-DoFs center-reach-out task and a survey. Results showed equivalent performance and perception for both mappings. However, learning is only visible in subjects that performed better in non-intuitive mapping, that required some familiarization to then exploit its features. Most of the myoelectric control designs use intuitive mappings. Nevertheless, non-intuitive mapping could provide more design flexibility, which can be especially interesting for patients with motor disabilities.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Muscle Synergies for Performance Enhancement and Learning in Myoelectric Control Maps.\",\"authors\":\"K C Tse, P Capsi-Morales, T Spiegeler Castaneda, C Piazza\",\"doi\":\"10.1109/ICORR58425.2023.10304809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work proposes two myoelectric control maps based on a DoF-wise synergy algorithm, inspired by human motor control studies. One map, called intuitive, matches control outputs with body movement directions. The second one, named non-intuitive, takes advantage of different synergies contribution to each DoF, without specific correlation to body movement directions. The effectiveness and learning process for the two maps is evaluated through performance metrics in ten able-bodied individuals. The analysis was conducted using a 2-DoFs center-reach-out task and a survey. Results showed equivalent performance and perception for both mappings. However, learning is only visible in subjects that performed better in non-intuitive mapping, that required some familiarization to then exploit its features. Most of the myoelectric control designs use intuitive mappings. Nevertheless, non-intuitive mapping could provide more design flexibility, which can be especially interesting for patients with motor disabilities.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2023 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR58425.2023.10304809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受人类运动控制研究的启发,这项工作提出了两个基于DoF协同算法的肌电控制图。一个被称为直觉的地图将控制输出与身体运动方向相匹配。第二种被命名为非直觉型,利用了每个DoF的不同协同作用,与身体运动方向没有特定的相关性。通过10名身体健全的个体的绩效指标来评估这两张地图的有效性和学习过程。该分析是使用2-DoFs中心联系任务和调查进行的。结果显示,两种映射的性能和感知能力相当。然而,只有在非直觉映射表现更好的科目中才能看到学习,这需要一些熟悉才能利用其特征。大多数肌电控制设计都使用直观的映射。然而,非直观的映射可以提供更多的设计灵活性,这对运动障碍患者来说尤其有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Muscle Synergies for Performance Enhancement and Learning in Myoelectric Control Maps.

This work proposes two myoelectric control maps based on a DoF-wise synergy algorithm, inspired by human motor control studies. One map, called intuitive, matches control outputs with body movement directions. The second one, named non-intuitive, takes advantage of different synergies contribution to each DoF, without specific correlation to body movement directions. The effectiveness and learning process for the two maps is evaluated through performance metrics in ten able-bodied individuals. The analysis was conducted using a 2-DoFs center-reach-out task and a survey. Results showed equivalent performance and perception for both mappings. However, learning is only visible in subjects that performed better in non-intuitive mapping, that required some familiarization to then exploit its features. Most of the myoelectric control designs use intuitive mappings. Nevertheless, non-intuitive mapping could provide more design flexibility, which can be especially interesting for patients with motor disabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信