Maria Lazzaroni, Giorgia Chini, Francesco Draicchio, Christian Di Natali, Darwin G Caldwell, Jesus Ortiz
{"title":"背部支撑外骨骼的控制,以协助携带活动。","authors":"Maria Lazzaroni, Giorgia Chini, Francesco Draicchio, Christian Di Natali, Darwin G Caldwell, Jesus Ortiz","doi":"10.1109/ICORR58425.2023.10304691","DOIUrl":null,"url":null,"abstract":"<p><p>Back-support exoskeletons are commonly used in the workplace to reduce low back pain risk for workers performing demanding activities. However, for the assistance of tasks differing from lifting, back-support exoskeletons potential has not been exploited extensively. This work focuses on the use of an active back-support exoskeleton to assist carrying. A control strategy is designed that modulates the exoskeleton torques to comply with the task assistance requirements. In particular, two gait phase detection frameworks are exploited to adapt the exoskeleton assistance according to the legs' motion. The control strategy is assessed through an experimental analysis on ten subjects. Carrying task is performed without and with the exoskeleton assistance. Results prove the potential of the presented control in assisting the task without hindering the gait movement and improving the usability experienced by users. Moreover, the exoskeleton assistance significantly reduces the lumbar load associated with the task, demonstrating its promising use for risk mitigation in the workplace.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of a Back-Support Exoskeleton to Assist Carrying Activities.\",\"authors\":\"Maria Lazzaroni, Giorgia Chini, Francesco Draicchio, Christian Di Natali, Darwin G Caldwell, Jesus Ortiz\",\"doi\":\"10.1109/ICORR58425.2023.10304691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Back-support exoskeletons are commonly used in the workplace to reduce low back pain risk for workers performing demanding activities. However, for the assistance of tasks differing from lifting, back-support exoskeletons potential has not been exploited extensively. This work focuses on the use of an active back-support exoskeleton to assist carrying. A control strategy is designed that modulates the exoskeleton torques to comply with the task assistance requirements. In particular, two gait phase detection frameworks are exploited to adapt the exoskeleton assistance according to the legs' motion. The control strategy is assessed through an experimental analysis on ten subjects. Carrying task is performed without and with the exoskeleton assistance. Results prove the potential of the presented control in assisting the task without hindering the gait movement and improving the usability experienced by users. Moreover, the exoskeleton assistance significantly reduces the lumbar load associated with the task, demonstrating its promising use for risk mitigation in the workplace.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2023 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR58425.2023.10304691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of a Back-Support Exoskeleton to Assist Carrying Activities.
Back-support exoskeletons are commonly used in the workplace to reduce low back pain risk for workers performing demanding activities. However, for the assistance of tasks differing from lifting, back-support exoskeletons potential has not been exploited extensively. This work focuses on the use of an active back-support exoskeleton to assist carrying. A control strategy is designed that modulates the exoskeleton torques to comply with the task assistance requirements. In particular, two gait phase detection frameworks are exploited to adapt the exoskeleton assistance according to the legs' motion. The control strategy is assessed through an experimental analysis on ten subjects. Carrying task is performed without and with the exoskeleton assistance. Results prove the potential of the presented control in assisting the task without hindering the gait movement and improving the usability experienced by users. Moreover, the exoskeleton assistance significantly reduces the lumbar load associated with the task, demonstrating its promising use for risk mitigation in the workplace.