Ander Vallinas, Arvid Keemink, Cristina Bayon, Edwin van Asseldonk, Herman van der Kooij
{"title":"基于动量的下肢外骨骼在站立过程中的平衡控制。","authors":"Ander Vallinas, Arvid Keemink, Cristina Bayon, Edwin van Asseldonk, Herman van der Kooij","doi":"10.1109/ICORR58425.2023.10304732","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present the implementation of a momentum-based balance controller in a lower-limb exoskeleton that can successfully reject perturbations and self-balance without any external aid. This controller is able to withstand pushes in the order of 30 N in forward and sideways directions with little sway. Additionally, with this controller, the system can perform balanced weight-shifting motions without the need for an explicit joint reference trajectory. There is potential, with fine parameter tuning, for a more robust balance performance that can reject stronger pushes during the presented tasks. Backward pushes were not rejected due to practical limitations (the mass of the device is concentrated in the back) rather than due to the control method itself. This controller is a preliminary result that brings paraplegic patients closer to crutch-free balance in a lower-limb exoskeleton.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Momentum-Based Balance Control of a Lower-Limb Exoskeleton During Stance.\",\"authors\":\"Ander Vallinas, Arvid Keemink, Cristina Bayon, Edwin van Asseldonk, Herman van der Kooij\",\"doi\":\"10.1109/ICORR58425.2023.10304732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we present the implementation of a momentum-based balance controller in a lower-limb exoskeleton that can successfully reject perturbations and self-balance without any external aid. This controller is able to withstand pushes in the order of 30 N in forward and sideways directions with little sway. Additionally, with this controller, the system can perform balanced weight-shifting motions without the need for an explicit joint reference trajectory. There is potential, with fine parameter tuning, for a more robust balance performance that can reject stronger pushes during the presented tasks. Backward pushes were not rejected due to practical limitations (the mass of the device is concentrated in the back) rather than due to the control method itself. This controller is a preliminary result that brings paraplegic patients closer to crutch-free balance in a lower-limb exoskeleton.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2023 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR58425.2023.10304732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Momentum-Based Balance Control of a Lower-Limb Exoskeleton During Stance.
In this work, we present the implementation of a momentum-based balance controller in a lower-limb exoskeleton that can successfully reject perturbations and self-balance without any external aid. This controller is able to withstand pushes in the order of 30 N in forward and sideways directions with little sway. Additionally, with this controller, the system can perform balanced weight-shifting motions without the need for an explicit joint reference trajectory. There is potential, with fine parameter tuning, for a more robust balance performance that can reject stronger pushes during the presented tasks. Backward pushes were not rejected due to practical limitations (the mass of the device is concentrated in the back) rather than due to the control method itself. This controller is a preliminary result that brings paraplegic patients closer to crutch-free balance in a lower-limb exoskeleton.