{"title":"基于多视角和多渠道注意力深度学习预测药物相互作用。","authors":"Liyu Huang, Qingfeng Chen, Wei Lan","doi":"10.1007/s13755-023-00250-x","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting drug-drug interactions (DDIs) has become a major concern in the drug research field because it helps explore the pharmacological function of drugs and enables the development of new therapeutic drugs. Existing prediction methods simply integrate multiple drug attributes or perform tasks on a biomedical knowledge graph (KG). Though effective, few methods can fully utilize multi-source drug data information. In this paper, a multi-view and multichannel attention deep learning (MMADL) model is proposed, which not only extracts rich drug features containing both drug attributes and drug-related entity information from multi-source databases, but also considers the consistency and complementarity of different drug feature representation learning approaches to improve the effectiveness and accuracy of DDI prediction. A single-layer perceptron encoder is applied to encode multi-source drug information to obtain multi-view drug representation vectors in the same linear space. Then, the multichannel attention mechanism is introduced to obtain the attention weight by adaptively learning the importance of drug features according to their contributions to DDI prediction. Further, the representation vectors of multi-view drug pairs with attention weights are used as inputs of the deep neural network to predict potential DDI. The accuracy and precision-recall curves of MMADL are 93.05 and 95.94, respectively. The results indicate that the proposed method outperforms other state-of-the-art methods.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"50"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting drug-drug interactions based on multi-view and multichannel attention deep learning.\",\"authors\":\"Liyu Huang, Qingfeng Chen, Wei Lan\",\"doi\":\"10.1007/s13755-023-00250-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting drug-drug interactions (DDIs) has become a major concern in the drug research field because it helps explore the pharmacological function of drugs and enables the development of new therapeutic drugs. Existing prediction methods simply integrate multiple drug attributes or perform tasks on a biomedical knowledge graph (KG). Though effective, few methods can fully utilize multi-source drug data information. In this paper, a multi-view and multichannel attention deep learning (MMADL) model is proposed, which not only extracts rich drug features containing both drug attributes and drug-related entity information from multi-source databases, but also considers the consistency and complementarity of different drug feature representation learning approaches to improve the effectiveness and accuracy of DDI prediction. A single-layer perceptron encoder is applied to encode multi-source drug information to obtain multi-view drug representation vectors in the same linear space. Then, the multichannel attention mechanism is introduced to obtain the attention weight by adaptively learning the importance of drug features according to their contributions to DDI prediction. Further, the representation vectors of multi-view drug pairs with attention weights are used as inputs of the deep neural network to predict potential DDI. The accuracy and precision-recall curves of MMADL are 93.05 and 95.94, respectively. The results indicate that the proposed method outperforms other state-of-the-art methods.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"11 1\",\"pages\":\"50\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-023-00250-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00250-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Predicting drug-drug interactions based on multi-view and multichannel attention deep learning.
Predicting drug-drug interactions (DDIs) has become a major concern in the drug research field because it helps explore the pharmacological function of drugs and enables the development of new therapeutic drugs. Existing prediction methods simply integrate multiple drug attributes or perform tasks on a biomedical knowledge graph (KG). Though effective, few methods can fully utilize multi-source drug data information. In this paper, a multi-view and multichannel attention deep learning (MMADL) model is proposed, which not only extracts rich drug features containing both drug attributes and drug-related entity information from multi-source databases, but also considers the consistency and complementarity of different drug feature representation learning approaches to improve the effectiveness and accuracy of DDI prediction. A single-layer perceptron encoder is applied to encode multi-source drug information to obtain multi-view drug representation vectors in the same linear space. Then, the multichannel attention mechanism is introduced to obtain the attention weight by adaptively learning the importance of drug features according to their contributions to DDI prediction. Further, the representation vectors of multi-view drug pairs with attention weights are used as inputs of the deep neural network to predict potential DDI. The accuracy and precision-recall curves of MMADL are 93.05 and 95.94, respectively. The results indicate that the proposed method outperforms other state-of-the-art methods.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.