Thore Bach Thomsen , Kristoffer Almdal , Anne S. Meyer
{"title":"聚对苯二甲酸乙二醇酯(PET)基质结晶度对酶降解的意义。","authors":"Thore Bach Thomsen , Kristoffer Almdal , Anne S. Meyer","doi":"10.1016/j.nbt.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Poly(ethylene terephthalate) (PET) is a semi-crystalline plastic polyester material with a global production volume of 83 Mt/year. PET is mainly used in textiles, but also widely used for packaging materials, notably plastic bottles, and is a major contributor to environmental plastic waste accumulation. Now that enzymes have been demonstrated to catalyze PET degradation, new options for sustainable bio-recycling of PET materials via enzymatic catalysis have emerged. The enzymatic degradation rate is strongly influenced by the properties of PET, notably the degree of crystallinity, <em>X</em><sub>C</sub>. The higher the <em>X</em><sub>C</sub> of the PET material, the slower the enzymatic rate. Crystallization of PET, resulting in increased <em>X</em><sub>C</sub>, is induced thermally (via heating) and/or mechanically (via stretching), and the <em>X</em><sub>C</sub> of most PET plastic bottles and microplastics exceeds what currently known enzymes can readily degrade. The enzymatic action occurs at the surface of the insoluble PET material and improves when the polyester chain mobility increases. The chain mobility increases drastically when the temperature exceeds the glass transition temperature, <em>T</em><sub>g</sub>, which is ∼40 °C at the surface layer of PET. Since PET crystallization starts at 70 °C, the ideal temperature for enzymatic degradation is just below 70 °C to balance high chain mobility and enzymatic reaction activation without inducing crystal formation. This paper reviews the current understanding on the properties of PET as an enzyme substrate and summarizes the most recent knowledge of how the crystalline and amorphous regions of PET form, and how the <em>X</em><sub>C</sub> and the <em>T</em><sub>g</sub> impact the efficiency of enzymatic PET degradation.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187167842300064X/pdfft?md5=752cdfce83c04e5ab776cda7c4bbcc56&pid=1-s2.0-S187167842300064X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Significance of poly(ethylene terephthalate) (PET) substrate crystallinity on enzymatic degradation\",\"authors\":\"Thore Bach Thomsen , Kristoffer Almdal , Anne S. Meyer\",\"doi\":\"10.1016/j.nbt.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poly(ethylene terephthalate) (PET) is a semi-crystalline plastic polyester material with a global production volume of 83 Mt/year. PET is mainly used in textiles, but also widely used for packaging materials, notably plastic bottles, and is a major contributor to environmental plastic waste accumulation. Now that enzymes have been demonstrated to catalyze PET degradation, new options for sustainable bio-recycling of PET materials via enzymatic catalysis have emerged. The enzymatic degradation rate is strongly influenced by the properties of PET, notably the degree of crystallinity, <em>X</em><sub>C</sub>. The higher the <em>X</em><sub>C</sub> of the PET material, the slower the enzymatic rate. Crystallization of PET, resulting in increased <em>X</em><sub>C</sub>, is induced thermally (via heating) and/or mechanically (via stretching), and the <em>X</em><sub>C</sub> of most PET plastic bottles and microplastics exceeds what currently known enzymes can readily degrade. The enzymatic action occurs at the surface of the insoluble PET material and improves when the polyester chain mobility increases. The chain mobility increases drastically when the temperature exceeds the glass transition temperature, <em>T</em><sub>g</sub>, which is ∼40 °C at the surface layer of PET. Since PET crystallization starts at 70 °C, the ideal temperature for enzymatic degradation is just below 70 °C to balance high chain mobility and enzymatic reaction activation without inducing crystal formation. This paper reviews the current understanding on the properties of PET as an enzyme substrate and summarizes the most recent knowledge of how the crystalline and amorphous regions of PET form, and how the <em>X</em><sub>C</sub> and the <em>T</em><sub>g</sub> impact the efficiency of enzymatic PET degradation.</p></div>\",\"PeriodicalId\":19190,\"journal\":{\"name\":\"New biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S187167842300064X/pdfft?md5=752cdfce83c04e5ab776cda7c4bbcc56&pid=1-s2.0-S187167842300064X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187167842300064X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187167842300064X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Significance of poly(ethylene terephthalate) (PET) substrate crystallinity on enzymatic degradation
Poly(ethylene terephthalate) (PET) is a semi-crystalline plastic polyester material with a global production volume of 83 Mt/year. PET is mainly used in textiles, but also widely used for packaging materials, notably plastic bottles, and is a major contributor to environmental plastic waste accumulation. Now that enzymes have been demonstrated to catalyze PET degradation, new options for sustainable bio-recycling of PET materials via enzymatic catalysis have emerged. The enzymatic degradation rate is strongly influenced by the properties of PET, notably the degree of crystallinity, XC. The higher the XC of the PET material, the slower the enzymatic rate. Crystallization of PET, resulting in increased XC, is induced thermally (via heating) and/or mechanically (via stretching), and the XC of most PET plastic bottles and microplastics exceeds what currently known enzymes can readily degrade. The enzymatic action occurs at the surface of the insoluble PET material and improves when the polyester chain mobility increases. The chain mobility increases drastically when the temperature exceeds the glass transition temperature, Tg, which is ∼40 °C at the surface layer of PET. Since PET crystallization starts at 70 °C, the ideal temperature for enzymatic degradation is just below 70 °C to balance high chain mobility and enzymatic reaction activation without inducing crystal formation. This paper reviews the current understanding on the properties of PET as an enzyme substrate and summarizes the most recent knowledge of how the crystalline and amorphous regions of PET form, and how the XC and the Tg impact the efficiency of enzymatic PET degradation.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.