James D. Ede , Ana S. Diges , Yueyang Zhang , Jo Anne Shatkin
{"title":"消防装备中石墨烯纺织品的生命周期风险评估。","authors":"James D. Ede , Ana S. Diges , Yueyang Zhang , Jo Anne Shatkin","doi":"10.1016/j.impact.2023.100488","DOIUrl":null,"url":null,"abstract":"<div><p>A nanomaterial life-cycle risk assessment (Nano LCRA) of a graphene-enabled textile used in the construction of heat and fire-resistant personal protective equipment (PPE) was conducted to develop, analyze, and prioritize potential occupational, health and environmental risks. The analysis identifies potential receptors and exposure pathways at each product life-cycle stage and makes a qualitative evaluation of the potential significance of each scenario. A literature review, quality evaluation, and database were developed as part of the LCRA to identify potential hazards associated with graphene-based materials (GBMs) throughout the product life-cycle. Generally, risks identified from graphene-enabled textiles were low. Of the developed exposure scenarios, occupational inhalation exposures during raw material and product manufacturing ranked highest. The analysis identifies the key potential human and environmental hazards and exposures of the products across the product life-cycle of graphene enabled textiles. Priority research gaps to reduce uncertainty include evaluating long-term, low dose graphene exposures typical of the workplace, as well as the potential release and hazard characterization of graphene-acrylic nanocomposites.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"33 ","pages":"Article 100488"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life-cycle risk assessment of graphene-enabled textiles in fire protection gear\",\"authors\":\"James D. Ede , Ana S. Diges , Yueyang Zhang , Jo Anne Shatkin\",\"doi\":\"10.1016/j.impact.2023.100488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A nanomaterial life-cycle risk assessment (Nano LCRA) of a graphene-enabled textile used in the construction of heat and fire-resistant personal protective equipment (PPE) was conducted to develop, analyze, and prioritize potential occupational, health and environmental risks. The analysis identifies potential receptors and exposure pathways at each product life-cycle stage and makes a qualitative evaluation of the potential significance of each scenario. A literature review, quality evaluation, and database were developed as part of the LCRA to identify potential hazards associated with graphene-based materials (GBMs) throughout the product life-cycle. Generally, risks identified from graphene-enabled textiles were low. Of the developed exposure scenarios, occupational inhalation exposures during raw material and product manufacturing ranked highest. The analysis identifies the key potential human and environmental hazards and exposures of the products across the product life-cycle of graphene enabled textiles. Priority research gaps to reduce uncertainty include evaluating long-term, low dose graphene exposures typical of the workplace, as well as the potential release and hazard characterization of graphene-acrylic nanocomposites.</p></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"33 \",\"pages\":\"Article 100488\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074823000393\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074823000393","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Life-cycle risk assessment of graphene-enabled textiles in fire protection gear
A nanomaterial life-cycle risk assessment (Nano LCRA) of a graphene-enabled textile used in the construction of heat and fire-resistant personal protective equipment (PPE) was conducted to develop, analyze, and prioritize potential occupational, health and environmental risks. The analysis identifies potential receptors and exposure pathways at each product life-cycle stage and makes a qualitative evaluation of the potential significance of each scenario. A literature review, quality evaluation, and database were developed as part of the LCRA to identify potential hazards associated with graphene-based materials (GBMs) throughout the product life-cycle. Generally, risks identified from graphene-enabled textiles were low. Of the developed exposure scenarios, occupational inhalation exposures during raw material and product manufacturing ranked highest. The analysis identifies the key potential human and environmental hazards and exposures of the products across the product life-cycle of graphene enabled textiles. Priority research gaps to reduce uncertainty include evaluating long-term, low dose graphene exposures typical of the workplace, as well as the potential release and hazard characterization of graphene-acrylic nanocomposites.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.