{"title":"β改变C57BL/6J小鼠星形胶质细胞中调节HMGCR和ABCA1基因的微小RNA的表达。","authors":"Hossein Azizi Dariuni, Mehrnaz Karimi Darabi, Zahra Nazeri, Shirin Azizidoost, Alireza Kheiroallah, Azam Khedri, Maryam Cheraghzadeh","doi":"10.22088/IJMCM.BUMS.12.1.30","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulation of brain cholesterol homeostasis causes the accumulation of extracellular protein deposits called amyloid plaques in the hippocampus which eventually leads to neuronal death, memory and learning deficits. The aim of the present study was to investigate the effect of beta amyloid on miRNAs regulating HMGCR and ABCA1 as cholesterol synthesis and homeostasis genes. Primary astrocytes were isolated from C57BL/6J mice, and were treated with 0.5 μM amyloid beta (Aβ). Expression levels of genes and miRNAs were measured by real-time PCR. In comparison to control, Aβ treatment resulted in a significant decrease in miR-96-5p expression as a positive and negative regulator of HMGCR and ABCA1, respectively. There was no significant increase in miR-27a-3p expression as a negative regulator of HMGCR. miR- 106b- 5p and miR-143-3p expressions were also dramatically decreased as ABCA1 negative regulators. Amyloid beta can alter the expression of major genes in the cholesterol homeostasis pathway via their regulatory miRNAs.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"12 1","pages":"30-39"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629724/pdf/","citationCount":"0","resultStr":"{\"title\":\"Amyloid Beta Alters the Expression of microRNAs Regulating HMGCR and ABCA1 Genes in Astrocytes of C57BL/6J Mice.\",\"authors\":\"Hossein Azizi Dariuni, Mehrnaz Karimi Darabi, Zahra Nazeri, Shirin Azizidoost, Alireza Kheiroallah, Azam Khedri, Maryam Cheraghzadeh\",\"doi\":\"10.22088/IJMCM.BUMS.12.1.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulation of brain cholesterol homeostasis causes the accumulation of extracellular protein deposits called amyloid plaques in the hippocampus which eventually leads to neuronal death, memory and learning deficits. The aim of the present study was to investigate the effect of beta amyloid on miRNAs regulating HMGCR and ABCA1 as cholesterol synthesis and homeostasis genes. Primary astrocytes were isolated from C57BL/6J mice, and were treated with 0.5 μM amyloid beta (Aβ). Expression levels of genes and miRNAs were measured by real-time PCR. In comparison to control, Aβ treatment resulted in a significant decrease in miR-96-5p expression as a positive and negative regulator of HMGCR and ABCA1, respectively. There was no significant increase in miR-27a-3p expression as a negative regulator of HMGCR. miR- 106b- 5p and miR-143-3p expressions were also dramatically decreased as ABCA1 negative regulators. Amyloid beta can alter the expression of major genes in the cholesterol homeostasis pathway via their regulatory miRNAs.</p>\",\"PeriodicalId\":14152,\"journal\":{\"name\":\"International Journal of Molecular and Cellular Medicine\",\"volume\":\"12 1\",\"pages\":\"30-39\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629724/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular and Cellular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22088/IJMCM.BUMS.12.1.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.12.1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Amyloid Beta Alters the Expression of microRNAs Regulating HMGCR and ABCA1 Genes in Astrocytes of C57BL/6J Mice.
Dysregulation of brain cholesterol homeostasis causes the accumulation of extracellular protein deposits called amyloid plaques in the hippocampus which eventually leads to neuronal death, memory and learning deficits. The aim of the present study was to investigate the effect of beta amyloid on miRNAs regulating HMGCR and ABCA1 as cholesterol synthesis and homeostasis genes. Primary astrocytes were isolated from C57BL/6J mice, and were treated with 0.5 μM amyloid beta (Aβ). Expression levels of genes and miRNAs were measured by real-time PCR. In comparison to control, Aβ treatment resulted in a significant decrease in miR-96-5p expression as a positive and negative regulator of HMGCR and ABCA1, respectively. There was no significant increase in miR-27a-3p expression as a negative regulator of HMGCR. miR- 106b- 5p and miR-143-3p expressions were also dramatically decreased as ABCA1 negative regulators. Amyloid beta can alter the expression of major genes in the cholesterol homeostasis pathway via their regulatory miRNAs.
期刊介绍:
The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).