自主大脑过程:一种从内到外观察大脑的邀请。

IF 3.4 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neural Circuits Pub Date : 2023-10-19 eCollection Date: 2023-01-01 DOI:10.3389/fncir.2023.1253609
Pedro E Maldonado, Miguel Concha-Miranda, Miriam Schwalm
{"title":"自主大脑过程:一种从内到外观察大脑的邀请。","authors":"Pedro E Maldonado, Miguel Concha-Miranda, Miriam Schwalm","doi":"10.3389/fncir.2023.1253609","DOIUrl":null,"url":null,"abstract":"<p><p>While external stimulation can reliably trigger neuronal activity, cerebral processes can operate independently from the environment. In this study, we conceptualize <i>autogenous cerebral processes (ACPs)</i> as intrinsic operations of the brain that exist on multiple scales and can influence or shape stimulus responses, behavior, homeostasis, and the physiological state of an organism. We further propose that the field should consider exploring to what extent perception, arousal, behavior, or movement, as well as other cognitive functions previously investigated mainly regarding their stimulus-response dynamics, are ACP-driven.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1253609"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629273/pdf/","citationCount":"0","resultStr":"{\"title\":\"Autogenous cerebral processes: an invitation to look at the brain from inside out.\",\"authors\":\"Pedro E Maldonado, Miguel Concha-Miranda, Miriam Schwalm\",\"doi\":\"10.3389/fncir.2023.1253609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While external stimulation can reliably trigger neuronal activity, cerebral processes can operate independently from the environment. In this study, we conceptualize <i>autogenous cerebral processes (ACPs)</i> as intrinsic operations of the brain that exist on multiple scales and can influence or shape stimulus responses, behavior, homeostasis, and the physiological state of an organism. We further propose that the field should consider exploring to what extent perception, arousal, behavior, or movement, as well as other cognitive functions previously investigated mainly regarding their stimulus-response dynamics, are ACP-driven.</p>\",\"PeriodicalId\":12498,\"journal\":{\"name\":\"Frontiers in Neural Circuits\",\"volume\":\"17 \",\"pages\":\"1253609\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629273/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neural Circuits\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncir.2023.1253609\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neural Circuits","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2023.1253609","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然外部刺激可以可靠地触发神经元活动,但大脑过程可以独立于环境运行。在这项研究中,我们将自体脑过程(ACPs)概念化为大脑的内在操作,存在于多个尺度上,可以影响或塑造刺激反应、行为、稳态和生物体的生理状态。我们进一步提出,该领域应考虑探索感知、唤醒、行为或运动,以及之前主要针对其刺激反应动力学研究的其他认知功能,在多大程度上是ACP驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autogenous cerebral processes: an invitation to look at the brain from inside out.

Autogenous cerebral processes: an invitation to look at the brain from inside out.

Autogenous cerebral processes: an invitation to look at the brain from inside out.

While external stimulation can reliably trigger neuronal activity, cerebral processes can operate independently from the environment. In this study, we conceptualize autogenous cerebral processes (ACPs) as intrinsic operations of the brain that exist on multiple scales and can influence or shape stimulus responses, behavior, homeostasis, and the physiological state of an organism. We further propose that the field should consider exploring to what extent perception, arousal, behavior, or movement, as well as other cognitive functions previously investigated mainly regarding their stimulus-response dynamics, are ACP-driven.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
5.70%
发文量
135
审稿时长
4-8 weeks
期刊介绍: Frontiers in Neural Circuits publishes rigorously peer-reviewed research on the emergent properties of neural circuits - the elementary modules of the brain. Specialty Chief Editors Takao K. Hensch and Edward Ruthazer at Harvard University and McGill University respectively, are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Frontiers in Neural Circuits launched in 2011 with great success and remains a "central watering hole" for research in neural circuits, serving the community worldwide to share data, ideas and inspiration. Articles revealing the anatomy, physiology, development or function of any neural circuitry in any species (from sponges to humans) are welcome. Our common thread seeks the computational strategies used by different circuits to link their structure with function (perceptual, motor, or internal), the general rules by which they operate, and how their particular designs lead to the emergence of complex properties and behaviors. Submissions focused on synaptic, cellular and connectivity principles in neural microcircuits using multidisciplinary approaches, especially newer molecular, developmental and genetic tools, are encouraged. Studies with an evolutionary perspective to better understand how circuit design and capabilities evolved to produce progressively more complex properties and behaviors are especially welcome. The journal is further interested in research revealing how plasticity shapes the structural and functional architecture of neural circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信