Nasrin Karami Hezarcheshmeh, Farideh Godarzbod, Media Noori Abdullah, Zinatossadat Hossaini
{"title":"胍的一锅多组分反应制备新型嘧啶三唑衍生物。","authors":"Nasrin Karami Hezarcheshmeh, Farideh Godarzbod, Media Noori Abdullah, Zinatossadat Hossaini","doi":"10.1007/s11030-023-10754-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this research the goal was to produce novel pyrimidine triazole compounds in high yields using triethylamin as an efficient catalyst. These new compounds were synthesized by using multicomponent reaction of aldehydes, guanidine, electron deficient acetylenic compounds, <i>tert</i>-butyl isocyanide and hydrazonoyle chloride in aqueous media. Due to the presence of an NH group, which was assessed using two different methodologies, newly synthesized pyrimidine triazoles have antioxidant properties. Additionally, the antibacterial activity of newly created pyrimidine triazoles was assessed using the disk distribution method with two different types of Gram-positive bacteria and Gram-negative bacteria, demonstrating that the use of these compounds prevented the growth of bacteria. Applied to the preparation of pyrimidine triazole derivatives, this method has short reaction times, high product yields, and the ability to separate catalyst and product using simple procedures.</p></div>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":"28 1","pages":"217 - 228"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green preparation of new pyrimidine triazole derivatives via one-pot multicomponent reactions of guanidine\",\"authors\":\"Nasrin Karami Hezarcheshmeh, Farideh Godarzbod, Media Noori Abdullah, Zinatossadat Hossaini\",\"doi\":\"10.1007/s11030-023-10754-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research the goal was to produce novel pyrimidine triazole compounds in high yields using triethylamin as an efficient catalyst. These new compounds were synthesized by using multicomponent reaction of aldehydes, guanidine, electron deficient acetylenic compounds, <i>tert</i>-butyl isocyanide and hydrazonoyle chloride in aqueous media. Due to the presence of an NH group, which was assessed using two different methodologies, newly synthesized pyrimidine triazoles have antioxidant properties. Additionally, the antibacterial activity of newly created pyrimidine triazoles was assessed using the disk distribution method with two different types of Gram-positive bacteria and Gram-negative bacteria, demonstrating that the use of these compounds prevented the growth of bacteria. Applied to the preparation of pyrimidine triazole derivatives, this method has short reaction times, high product yields, and the ability to separate catalyst and product using simple procedures.</p></div>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\"28 1\",\"pages\":\"217 - 228\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11030-023-10754-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11030-023-10754-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Green preparation of new pyrimidine triazole derivatives via one-pot multicomponent reactions of guanidine
In this research the goal was to produce novel pyrimidine triazole compounds in high yields using triethylamin as an efficient catalyst. These new compounds were synthesized by using multicomponent reaction of aldehydes, guanidine, electron deficient acetylenic compounds, tert-butyl isocyanide and hydrazonoyle chloride in aqueous media. Due to the presence of an NH group, which was assessed using two different methodologies, newly synthesized pyrimidine triazoles have antioxidant properties. Additionally, the antibacterial activity of newly created pyrimidine triazoles was assessed using the disk distribution method with two different types of Gram-positive bacteria and Gram-negative bacteria, demonstrating that the use of these compounds prevented the growth of bacteria. Applied to the preparation of pyrimidine triazole derivatives, this method has short reaction times, high product yields, and the ability to separate catalyst and product using simple procedures.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;