关于一类Moran谱测度的谱的中值性质

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Jinjun Li, Zhiyi Wu
{"title":"关于一类Moran谱测度的谱的中值性质","authors":"Jinjun Li,&nbsp;Zhiyi Wu","doi":"10.1016/j.acha.2023.101606","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the Beurling dimensions of the spectra for a class of Moran spectral measures are in 0 and their upper entropy dimensions. Moreover, for such a Moran spectral measure <em>μ</em>, we show that the Beurling dimension for the spectra of <em>μ</em> has the intermediate value property: let <em>t</em> be any value in 0 and the upper entropy dimension of <em>μ</em>, then there exists a spectrum whose Beurling dimension is <em>t</em><span>. In particular, this result settles affirmatively a conjecture involving spectral Bernoulli convolution in Fu et al. (2018) </span><span>[20]</span>. Furthermore, we prove that the set of the spectra whose Beurling dimensions are equal to any fixed value in 0 and <span><math><msub><mrow><mover><mrow><mi>dim</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>e</mi></mrow></msub><mspace></mspace><mi>μ</mi></math></span> has the cardinality of the continuum.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101606"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the intermediate value property of spectra for a class of Moran spectral measures\",\"authors\":\"Jinjun Li,&nbsp;Zhiyi Wu\",\"doi\":\"10.1016/j.acha.2023.101606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the Beurling dimensions of the spectra for a class of Moran spectral measures are in 0 and their upper entropy dimensions. Moreover, for such a Moran spectral measure <em>μ</em>, we show that the Beurling dimension for the spectra of <em>μ</em> has the intermediate value property: let <em>t</em> be any value in 0 and the upper entropy dimension of <em>μ</em>, then there exists a spectrum whose Beurling dimension is <em>t</em><span>. In particular, this result settles affirmatively a conjecture involving spectral Bernoulli convolution in Fu et al. (2018) </span><span>[20]</span>. Furthermore, we prove that the set of the spectra whose Beurling dimensions are equal to any fixed value in 0 and <span><math><msub><mrow><mover><mrow><mi>dim</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>e</mi></mrow></msub><mspace></mspace><mi>μ</mi></math></span> has the cardinality of the continuum.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"68 \",\"pages\":\"Article 101606\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000933\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000933","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了一类Moran谱测度的谱的Beurling维数在0及其上熵维数。此外,对于这样的Moran谱测度μ,我们证明了μ的谱的Beurling维数具有中间值性质:设t为0中的任何值和μ的上熵维数,则存在Beurling维为t的谱。特别地,这一结果肯定地解决了[J.Math.Pures Appl.116(2018),105–131]中涉及谱伯努利卷积的猜想。此外,我们证明了Beurling维数等于0和dim‾eμ中任何固定值的谱集具有连续体的基数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the intermediate value property of spectra for a class of Moran spectral measures

We prove that the Beurling dimensions of the spectra for a class of Moran spectral measures are in 0 and their upper entropy dimensions. Moreover, for such a Moran spectral measure μ, we show that the Beurling dimension for the spectra of μ has the intermediate value property: let t be any value in 0 and the upper entropy dimension of μ, then there exists a spectrum whose Beurling dimension is t. In particular, this result settles affirmatively a conjecture involving spectral Bernoulli convolution in Fu et al. (2018) [20]. Furthermore, we prove that the set of the spectra whose Beurling dimensions are equal to any fixed value in 0 and dimeμ has the cardinality of the continuum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信