区间划分的指数基

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Götz Pfander , Shauna Revay , David Walnut
{"title":"区间划分的指数基","authors":"Götz Pfander ,&nbsp;Shauna Revay ,&nbsp;David Walnut","doi":"10.1016/j.acha.2023.101607","DOIUrl":null,"url":null,"abstract":"<div><p>For a partition of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> into intervals <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> we prove the existence of a partition of <span><math><mi>Z</mi></math></span> into <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the complex exponential functions with frequencies in <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> form a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, and furthermore, that for any <span><math><mi>J</mi><mo>⊆</mo><mo>{</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>2</mn><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>}</mo></math></span>, the exponential functions with frequencies in <span><math><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>J</mi></mrow></msub><msub><mrow><mi>Λ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> form a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>I</mi><mo>)</mo></math></span> for any interval <em>I</em> with length <span><math><mo>|</mo><mi>I</mi><mo>|</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>J</mi></mrow></msub><mo>|</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></math></span>. The construction extends to infinite partitions of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, but with size limitations on the subsets <span><math><mi>J</mi><mo>⊆</mo><mi>Z</mi></math></span>; it combines the ergodic properties of subsequences of <span><math><mi>Z</mi></math></span> known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101607"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exponential bases for partitions of intervals\",\"authors\":\"Götz Pfander ,&nbsp;Shauna Revay ,&nbsp;David Walnut\",\"doi\":\"10.1016/j.acha.2023.101607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a partition of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> into intervals <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> we prove the existence of a partition of <span><math><mi>Z</mi></math></span> into <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the complex exponential functions with frequencies in <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> form a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, and furthermore, that for any <span><math><mi>J</mi><mo>⊆</mo><mo>{</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>2</mn><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>}</mo></math></span>, the exponential functions with frequencies in <span><math><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>J</mi></mrow></msub><msub><mrow><mi>Λ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> form a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>I</mi><mo>)</mo></math></span> for any interval <em>I</em> with length <span><math><mo>|</mo><mi>I</mi><mo>|</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>J</mi></mrow></msub><mo>|</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></math></span>. The construction extends to infinite partitions of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, but with size limitations on the subsets <span><math><mi>J</mi><mo>⊆</mo><mi>Z</mi></math></span>; it combines the ergodic properties of subsequences of <span><math><mi>Z</mi></math></span> known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"68 \",\"pages\":\"Article 101607\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000945\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000945","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

对于[0,1]划分为区间I1,…,在中,我们证明了Z划分为∧1,…,∧n的存在性,使得频率在∧k中的复指数函数形成L2(Ik)的Riesz基,此外,对于任何J⊆{1,2,……,n},频率在⋃J∈J∧J中的指数函数形成长度为|I|=∑J∈J|Ij|的任何区间I的L2(I)的Riesz基。该构造扩展到[0,1]的无限分区,但在子集J⊆Z上有大小限制;它将称为Beatty-Fraenkel序列的Z子序列的遍历性质与指数Riesz基上的Avdonin定理相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential bases for partitions of intervals

For a partition of [0,1] into intervals I1,,In we prove the existence of a partition of Z into Λ1,,Λn such that the complex exponential functions with frequencies in Λk form a Riesz basis for L2(Ik), and furthermore, that for any J{1,2,,n}, the exponential functions with frequencies in jJΛj form a Riesz basis for L2(I) for any interval I with length |I|=jJ|Ij|. The construction extends to infinite partitions of [0,1], but with size limitations on the subsets JZ; it combines the ergodic properties of subsequences of Z known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信