复反射群的对角共变环

IF 0.9 1区 数学 Q2 MATHEMATICS
Stephen Griffeth
{"title":"复反射群的对角共变环","authors":"Stephen Griffeth","doi":"10.2140/ant.2023.17.2033","DOIUrl":null,"url":null,"abstract":"<p>For an irreducible complex reflection group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> of rank <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> containing <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> reflections, we put <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi>\n<mo>=</mo> <mn>2</mn><mi>N</mi><mo>∕</mo><mi>n</mi></math> and construct a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mo stretchy=\"false\">(</mo><mi>g</mi>\n<mo>+</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math>-dimensional irreducible representation of the Cherednik algebra which is (as a vector space) a quotient of the diagonal coinvariant ring of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>. We propose that this representation of the Cherednik algebra is the single largest representation bearing this relationship to the diagonal coinvariant ring, and that further corrections to this estimate of the dimension of the diagonal coinvariant ring by <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mo stretchy=\"false\">(</mo><mi>g</mi>\n<mo>+</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math> should be orders of magnitude smaller. A crucial ingredient in the construction is the existence of a dot action of a certain product of symmetric groups (the Namikawa–Weyl group) acting on the parameter space of the rational Cherednik algebra and leaving invariant both the finite Hecke algebra and the spherical subalgebra; this fact is a consequence of ideas of Berest and Chalykh on the relationship between the Cherednik algebra and quasiinvariants. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"54 48","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The diagonal coinvariant ring of a complex reflection group\",\"authors\":\"Stephen Griffeth\",\"doi\":\"10.2140/ant.2023.17.2033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an irreducible complex reflection group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>W</mi></math> of rank <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> containing <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math> reflections, we put <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi>\\n<mo>=</mo> <mn>2</mn><mi>N</mi><mo>∕</mo><mi>n</mi></math> and construct a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mi>g</mi>\\n<mo>+</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math>-dimensional irreducible representation of the Cherednik algebra which is (as a vector space) a quotient of the diagonal coinvariant ring of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>W</mi></math>. We propose that this representation of the Cherednik algebra is the single largest representation bearing this relationship to the diagonal coinvariant ring, and that further corrections to this estimate of the dimension of the diagonal coinvariant ring by <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mi>g</mi>\\n<mo>+</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math> should be orders of magnitude smaller. A crucial ingredient in the construction is the existence of a dot action of a certain product of symmetric groups (the Namikawa–Weyl group) acting on the parameter space of the rational Cherednik algebra and leaving invariant both the finite Hecke algebra and the spherical subalgebra; this fact is a consequence of ideas of Berest and Chalykh on the relationship between the Cherednik algebra and quasiinvariants. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"54 48\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.2033\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.2033","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于包含n个反射的n阶不可约复反射群W,我们设g=2N/n,并构造了Cherednik代数的(g+1)n维不可约表示,它是W的对角共变环的商。我们提出Cherednik代数的这种表示是与对角共变环具有这种关系的最大的单一表示,并且通过(g+1)n对对角线共变环的维度的这种估计的进一步校正应该小几个数量级。构造中的一个关键因素是对称群(Namikawa–Weyl群)的某个乘积在有理Cherednik代数的参数空间上的点作用的存在性,并使有限Hecke代数和球面子代数保持不变;这一事实是Berest和Chalykh关于Cherednik代数与拟不变量之间关系的思想的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diagonal coinvariant ring of a complex reflection group

For an irreducible complex reflection group W of rank n containing N reflections, we put g = 2Nn and construct a (g + 1)n-dimensional irreducible representation of the Cherednik algebra which is (as a vector space) a quotient of the diagonal coinvariant ring of W. We propose that this representation of the Cherednik algebra is the single largest representation bearing this relationship to the diagonal coinvariant ring, and that further corrections to this estimate of the dimension of the diagonal coinvariant ring by (g + 1)n should be orders of magnitude smaller. A crucial ingredient in the construction is the existence of a dot action of a certain product of symmetric groups (the Namikawa–Weyl group) acting on the parameter space of the rational Cherednik algebra and leaving invariant both the finite Hecke algebra and the spherical subalgebra; this fact is a consequence of ideas of Berest and Chalykh on the relationship between the Cherednik algebra and quasiinvariants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信